zephyr/drivers/interrupt_controller/intc_gicv3.c
chao an 5831d91ad9 arm/gicv3: set routing affinity before enable IRQ
In corner case, the pending ISR will be triggered immediately
after enable the IRQ, this PR will setting CPU affinity first
to avoid routing the unexpected IRQ to other CPUs.

Signed-off-by: chao an <anchao@lixiang.com>
2024-09-04 09:53:04 +02:00

632 lines
16 KiB
C

/*
* Copyright 2020 Broadcom
* Copyright 2024 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/sw_isr_table.h>
#include <zephyr/dt-bindings/interrupt-controller/arm-gic.h>
#include <zephyr/drivers/interrupt_controller/gic.h>
#include <zephyr/sys/barrier.h>
#include "intc_gic_common_priv.h"
#include "intc_gicv3_priv.h"
#include <string.h>
#define DT_DRV_COMPAT arm_gic_v3
/* Redistributor base addresses for each core */
mem_addr_t gic_rdists[CONFIG_MP_MAX_NUM_CPUS];
#if defined(CONFIG_ARMV8_A_NS) || defined(CONFIG_GIC_SINGLE_SECURITY_STATE)
#define IGROUPR_VAL 0xFFFFFFFFU
#else
#define IGROUPR_VAL 0x0U
#endif
/*
* We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
* deal with (one configuration byte per interrupt). PENDBASE has to
* be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
*/
#define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
#define LPI_PROPBASE_SZ(nrbits) ROUND_UP(BIT(nrbits), KB(64))
#define LPI_PENDBASE_SZ(nrbits) ROUND_UP(BIT(nrbits) / 8, KB(64))
#ifdef CONFIG_GIC_V3_ITS
static uintptr_t lpi_prop_table;
atomic_t nlpi_intid = ATOMIC_INIT(8192);
#endif
static inline mem_addr_t gic_get_rdist(void)
{
return gic_rdists[arch_curr_cpu()->id];
}
/*
* Wait for register write pending
* TODO: add timed wait
*/
static int gic_wait_rwp(uint32_t intid)
{
uint32_t rwp_mask;
mem_addr_t base;
if (intid < GIC_SPI_INT_BASE) {
base = (gic_get_rdist() + GICR_CTLR);
rwp_mask = BIT(GICR_CTLR_RWP);
} else {
base = GICD_CTLR;
rwp_mask = BIT(GICD_CTLR_RWP);
}
while (sys_read32(base) & rwp_mask) {
;
}
return 0;
}
#ifdef CONFIG_GIC_V3_ITS
static void arm_gic_lpi_setup(unsigned int intid, bool enable)
{
uint8_t *cfg = &((uint8_t *)lpi_prop_table)[intid - 8192];
if (enable) {
*cfg |= BIT(0);
} else {
*cfg &= ~BIT(0);
}
barrier_dsync_fence_full();
its_rdist_invall();
}
static void arm_gic_lpi_set_priority(unsigned int intid, unsigned int prio)
{
uint8_t *cfg = &((uint8_t *)lpi_prop_table)[intid - 8192];
*cfg &= 0xfc;
*cfg |= prio & 0xfc;
barrier_dsync_fence_full();
its_rdist_invall();
}
static bool arm_gic_lpi_is_enabled(unsigned int intid)
{
uint8_t *cfg = &((uint8_t *)lpi_prop_table)[intid - 8192];
return (*cfg & BIT(0));
}
#endif
#if defined(CONFIG_ARMV8_A_NS) || defined(CONFIG_GIC_SINGLE_SECURITY_STATE)
static inline void arm_gic_write_irouter(uint64_t val, unsigned int intid)
{
mem_addr_t addr = IROUTER(GET_DIST_BASE(intid), intid);
#ifdef CONFIG_ARM
sys_write32((uint32_t)val, addr);
sys_write32((uint32_t)(val >> 32U), addr + 4);
#else
sys_write64(val, addr);
#endif
}
#endif
void arm_gic_irq_set_priority(unsigned int intid,
unsigned int prio, uint32_t flags)
{
#ifdef CONFIG_GIC_V3_ITS
if (intid >= 8192) {
arm_gic_lpi_set_priority(intid, prio);
return;
}
#endif
uint32_t mask = BIT(intid & (GIC_NUM_INTR_PER_REG - 1));
uint32_t idx = intid / GIC_NUM_INTR_PER_REG;
uint32_t shift;
uint32_t val;
mem_addr_t base = GET_DIST_BASE(intid);
/* Disable the interrupt */
sys_write32(mask, ICENABLER(base, idx));
gic_wait_rwp(intid);
/* PRIORITYR registers provide byte access */
sys_write8(prio & GIC_PRI_MASK, IPRIORITYR(base, intid));
/* Interrupt type config */
if (!GIC_IS_SGI(intid)) {
idx = intid / GIC_NUM_CFG_PER_REG;
shift = (intid & (GIC_NUM_CFG_PER_REG - 1)) * 2;
val = sys_read32(ICFGR(base, idx));
val &= ~(GICD_ICFGR_MASK << shift);
if (flags & IRQ_TYPE_EDGE) {
val |= (GICD_ICFGR_TYPE << shift);
}
sys_write32(val, ICFGR(base, idx));
}
}
void arm_gic_irq_enable(unsigned int intid)
{
#ifdef CONFIG_GIC_V3_ITS
if (intid >= 8192) {
arm_gic_lpi_setup(intid, true);
return;
}
#endif
uint32_t mask = BIT(intid & (GIC_NUM_INTR_PER_REG - 1));
uint32_t idx = intid / GIC_NUM_INTR_PER_REG;
#if defined(CONFIG_ARMV8_A_NS) || defined(CONFIG_GIC_SINGLE_SECURITY_STATE)
/*
* Affinity routing is enabled for Armv8-A Non-secure state (GICD_CTLR.ARE_NS
* is set to '1') and for GIC single security state (GICD_CTRL.ARE is set to '1'),
* so need to set SPI's affinity, now set it to be the PE on which it is enabled.
*/
if (GIC_IS_SPI(intid)) {
arm_gic_write_irouter(MPIDR_TO_CORE(GET_MPIDR()), intid);
}
#endif
sys_write32(mask, ISENABLER(GET_DIST_BASE(intid), idx));
}
void arm_gic_irq_disable(unsigned int intid)
{
#ifdef CONFIG_GIC_V3_ITS
if (intid >= 8192) {
arm_gic_lpi_setup(intid, false);
return;
}
#endif
uint32_t mask = BIT(intid & (GIC_NUM_INTR_PER_REG - 1));
uint32_t idx = intid / GIC_NUM_INTR_PER_REG;
sys_write32(mask, ICENABLER(GET_DIST_BASE(intid), idx));
/* poll to ensure write is complete */
gic_wait_rwp(intid);
}
bool arm_gic_irq_is_enabled(unsigned int intid)
{
#ifdef CONFIG_GIC_V3_ITS
if (intid >= 8192) {
return arm_gic_lpi_is_enabled(intid);
}
#endif
uint32_t mask = BIT(intid & (GIC_NUM_INTR_PER_REG - 1));
uint32_t idx = intid / GIC_NUM_INTR_PER_REG;
uint32_t val;
val = sys_read32(ISENABLER(GET_DIST_BASE(intid), idx));
return (val & mask) != 0;
}
bool arm_gic_irq_is_pending(unsigned int intid)
{
uint32_t mask = BIT(intid & (GIC_NUM_INTR_PER_REG - 1));
uint32_t idx = intid / GIC_NUM_INTR_PER_REG;
uint32_t val;
val = sys_read32(ISPENDR(GET_DIST_BASE(intid), idx));
return (val & mask) != 0;
}
void arm_gic_irq_set_pending(unsigned int intid)
{
uint32_t mask = BIT(intid & (GIC_NUM_INTR_PER_REG - 1));
uint32_t idx = intid / GIC_NUM_INTR_PER_REG;
sys_write32(mask, ISPENDR(GET_DIST_BASE(intid), idx));
}
void arm_gic_irq_clear_pending(unsigned int intid)
{
uint32_t mask = BIT(intid & (GIC_NUM_INTR_PER_REG - 1));
uint32_t idx = intid / GIC_NUM_INTR_PER_REG;
sys_write32(mask, ICPENDR(GET_DIST_BASE(intid), idx));
}
unsigned int arm_gic_get_active(void)
{
int intid;
/* (Pending -> Active / AP) or (AP -> AP) */
intid = read_sysreg(ICC_IAR1_EL1);
return intid;
}
void arm_gic_eoi(unsigned int intid)
{
/*
* Interrupt request deassertion from peripheral to GIC happens
* by clearing interrupt condition by a write to the peripheral
* register. It is desired that the write transfer is complete
* before the core tries to change GIC state from 'AP/Active' to
* a new state on seeing 'EOI write'.
* Since ICC interface writes are not ordered against Device
* memory writes, a barrier is required to ensure the ordering.
* The dsb will also ensure *completion* of previous writes with
* DEVICE nGnRnE attribute.
*/
barrier_dsync_fence_full();
/* (AP -> Pending) Or (Active -> Inactive) or (AP to AP) nested case */
write_sysreg(intid, ICC_EOIR1_EL1);
}
void gic_raise_sgi(unsigned int sgi_id, uint64_t target_aff,
uint16_t target_list)
{
uint32_t aff3, aff2, aff1;
uint64_t sgi_val;
__ASSERT_NO_MSG(GIC_IS_SGI(sgi_id));
/* Extract affinity fields from target */
aff1 = MPIDR_AFFLVL(target_aff, 1);
aff2 = MPIDR_AFFLVL(target_aff, 2);
#if defined(CONFIG_ARM)
/* There is no Aff3 in AArch32 MPIDR */
aff3 = 0;
#else
aff3 = MPIDR_AFFLVL(target_aff, 3);
#endif
sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_id,
SGIR_IRM_TO_AFF, target_list);
barrier_dsync_fence_full();
write_sysreg(sgi_val, ICC_SGI1R);
barrier_isync_fence_full();
}
/*
* Wake up GIC redistributor.
* clear ProcessorSleep and wait till ChildAsleep is cleared.
* ProcessSleep to be cleared only when ChildAsleep is set
* Check if redistributor is not powered already.
*/
static void gicv3_rdist_enable(mem_addr_t rdist)
{
if (!(sys_read32(rdist + GICR_WAKER) & BIT(GICR_WAKER_CA))) {
return;
}
if (GICR_IIDR_PRODUCT_ID_GET(sys_read32(rdist + GICR_IIDR)) >= 0x2) {
if (sys_read32(rdist + GICR_PWRR) & BIT(GICR_PWRR_RDPD)) {
sys_set_bit(rdist + GICR_PWRR, GICR_PWRR_RDAG);
sys_clear_bit(rdist + GICR_PWRR, GICR_PWRR_RDPD);
while (sys_read32(rdist + GICR_PWRR) & BIT(GICR_PWRR_RDPD)) {
;
}
}
}
sys_clear_bit(rdist + GICR_WAKER, GICR_WAKER_PS);
while (sys_read32(rdist + GICR_WAKER) & BIT(GICR_WAKER_CA)) {
;
}
}
#ifdef CONFIG_GIC_V3_ITS
/*
* Setup LPIs Configuration & Pending tables for redistributors
* LPI configuration is global, each redistributor has a pending table
*/
static void gicv3_rdist_setup_lpis(mem_addr_t rdist)
{
unsigned int lpi_id_bits = MIN(GICD_TYPER_IDBITS(sys_read32(GICD_TYPER)),
ITS_MAX_LPI_NRBITS);
uintptr_t lpi_pend_table;
uint64_t reg;
uint32_t ctlr;
/* If not, alloc a common prop table for all redistributors */
if (!lpi_prop_table) {
lpi_prop_table = (uintptr_t)k_aligned_alloc(4 * 1024, LPI_PROPBASE_SZ(lpi_id_bits));
memset((void *)lpi_prop_table, 0, LPI_PROPBASE_SZ(lpi_id_bits));
}
lpi_pend_table = (uintptr_t)k_aligned_alloc(64 * 1024, LPI_PENDBASE_SZ(lpi_id_bits));
memset((void *)lpi_pend_table, 0, LPI_PENDBASE_SZ(lpi_id_bits));
ctlr = sys_read32(rdist + GICR_CTLR);
ctlr &= ~GICR_CTLR_ENABLE_LPIS;
sys_write32(ctlr, rdist + GICR_CTLR);
/* PROPBASE */
reg = (GIC_BASER_SHARE_INNER << GITR_PROPBASER_SHAREABILITY_SHIFT) |
(GIC_BASER_CACHE_RAWAWB << GITR_PROPBASER_INNER_CACHE_SHIFT) |
(lpi_prop_table & (GITR_PROPBASER_ADDR_MASK << GITR_PROPBASER_ADDR_SHIFT)) |
(GIC_BASER_CACHE_INNERLIKE << GITR_PROPBASER_OUTER_CACHE_SHIFT) |
((lpi_id_bits - 1) & GITR_PROPBASER_ID_BITS_MASK);
sys_write64(reg, rdist + GICR_PROPBASER);
/* TOFIX: check SHAREABILITY validity */
/* PENDBASE */
reg = (GIC_BASER_SHARE_INNER << GITR_PENDBASER_SHAREABILITY_SHIFT) |
(GIC_BASER_CACHE_RAWAWB << GITR_PENDBASER_INNER_CACHE_SHIFT) |
(lpi_pend_table & (GITR_PENDBASER_ADDR_MASK << GITR_PENDBASER_ADDR_SHIFT)) |
(GIC_BASER_CACHE_INNERLIKE << GITR_PENDBASER_OUTER_CACHE_SHIFT) |
GITR_PENDBASER_PTZ;
sys_write64(reg, rdist + GICR_PENDBASER);
/* TOFIX: check SHAREABILITY validity */
ctlr = sys_read32(rdist + GICR_CTLR);
ctlr |= GICR_CTLR_ENABLE_LPIS;
sys_write32(ctlr, rdist + GICR_CTLR);
barrier_dsync_fence_full();
}
#endif
/*
* Initialize the cpu interface. This should be called by each core.
*/
static void gicv3_cpuif_init(void)
{
uint32_t icc_sre;
uint32_t intid;
mem_addr_t base = gic_get_rdist() + GICR_SGI_BASE_OFF;
/* Disable all sgi ppi */
sys_write32(BIT64_MASK(GIC_NUM_INTR_PER_REG), ICENABLER(base, 0));
/* Any sgi/ppi intid ie. 0-31 will select GICR_CTRL */
gic_wait_rwp(0);
/* Clear pending */
sys_write32(BIT64_MASK(GIC_NUM_INTR_PER_REG), ICPENDR(base, 0));
/* Configure all SGIs/PPIs as G1S or G1NS depending on Zephyr
* is run in EL1S or EL1NS respectively.
* All interrupts will be delivered as irq
*/
sys_write32(IGROUPR_VAL, IGROUPR(base, 0));
sys_write32(BIT64_MASK(GIC_NUM_INTR_PER_REG), IGROUPMODR(base, 0));
/*
* Configure default priorities for SGI 0:15 and PPI 0:15.
*/
for (intid = 0; intid < GIC_SPI_INT_BASE;
intid += GIC_NUM_PRI_PER_REG) {
sys_write32(GIC_INT_DEF_PRI_X4, IPRIORITYR(base, intid));
}
/* Configure PPIs as level triggered */
sys_write32(0, ICFGR(base, 1));
/*
* Check if system interface can be enabled.
* 'icc_sre_el3' needs to be configured at 'EL3'
* to allow access to 'icc_sre_el1' at 'EL1'
* eg: z_arch_el3_plat_init can be used by platform.
*/
icc_sre = read_sysreg(ICC_SRE_EL1);
if (!(icc_sre & ICC_SRE_ELx_SRE_BIT)) {
icc_sre = (icc_sre | ICC_SRE_ELx_SRE_BIT |
ICC_SRE_ELx_DIB_BIT | ICC_SRE_ELx_DFB_BIT);
write_sysreg(icc_sre, ICC_SRE_EL1);
icc_sre = read_sysreg(ICC_SRE_EL1);
__ASSERT_NO_MSG(icc_sre & ICC_SRE_ELx_SRE_BIT);
}
write_sysreg(GIC_IDLE_PRIO, ICC_PMR_EL1);
/* Allow group1 interrupts */
write_sysreg(1, ICC_IGRPEN1_EL1);
}
/*
* TODO: Consider Zephyr in EL1NS.
*/
static void gicv3_dist_init(void)
{
unsigned int num_ints;
unsigned int intid;
unsigned int idx;
mem_addr_t base = GIC_DIST_BASE;
num_ints = sys_read32(GICD_TYPER);
num_ints &= GICD_TYPER_ITLINESNUM_MASK;
num_ints = (num_ints + 1) << 5;
/* Disable the distributor */
sys_write32(0, GICD_CTLR);
gic_wait_rwp(GIC_SPI_INT_BASE);
#ifdef CONFIG_GIC_SINGLE_SECURITY_STATE
/*
* Before configuration, we need to check whether
* the GIC single security state mode is supported.
* Make sure GICD_CTRL_NS is 1.
*/
sys_set_bit(GICD_CTLR, GICD_CTRL_NS);
__ASSERT(sys_test_bit(GICD_CTLR, GICD_CTRL_NS),
"Current GIC does not support single security state");
#endif
/*
* Default configuration of all SPIs
*/
for (intid = GIC_SPI_INT_BASE; intid < num_ints;
intid += GIC_NUM_INTR_PER_REG) {
idx = intid / GIC_NUM_INTR_PER_REG;
/* Disable interrupt */
sys_write32(BIT64_MASK(GIC_NUM_INTR_PER_REG),
ICENABLER(base, idx));
/* Clear pending */
sys_write32(BIT64_MASK(GIC_NUM_INTR_PER_REG),
ICPENDR(base, idx));
sys_write32(IGROUPR_VAL, IGROUPR(base, idx));
sys_write32(BIT64_MASK(GIC_NUM_INTR_PER_REG),
IGROUPMODR(base, idx));
}
/* wait for rwp on GICD */
gic_wait_rwp(GIC_SPI_INT_BASE);
/* Configure default priorities for all SPIs. */
for (intid = GIC_SPI_INT_BASE; intid < num_ints;
intid += GIC_NUM_PRI_PER_REG) {
sys_write32(GIC_INT_DEF_PRI_X4, IPRIORITYR(base, intid));
}
/* Configure all SPIs as active low, level triggered by default */
for (intid = GIC_SPI_INT_BASE; intid < num_ints;
intid += GIC_NUM_CFG_PER_REG) {
idx = intid / GIC_NUM_CFG_PER_REG;
sys_write32(0, ICFGR(base, idx));
}
#ifdef CONFIG_ARMV8_A_NS
/* Enable distributor with ARE */
sys_write32(BIT(GICD_CTRL_ARE_NS) | BIT(GICD_CTLR_ENABLE_G1NS),
GICD_CTLR);
#elif defined(CONFIG_GIC_SINGLE_SECURITY_STATE)
/*
* For GIC single security state, the config GIC_SINGLE_SECURITY_STATE
* means the GIC is under single security state which has only two
* groups: group 0 and group 1.
* Then set GICD_CTLR_ARE and GICD_CTLR_ENABLE_G1 to enable Group 1
* interrupt.
* Since the GICD_CTLR_ARE and GICD_CTRL_ARE_S share BIT(4), and
* similarly the GICD_CTLR_ENABLE_G1 and GICD_CTLR_ENABLE_G1NS share
* BIT(1), we can reuse them.
*/
sys_write32(BIT(GICD_CTRL_ARE_S) | BIT(GICD_CTLR_ENABLE_G1NS),
GICD_CTLR);
#else
/* enable Group 1 secure interrupts */
sys_set_bit(GICD_CTLR, GICD_CTLR_ENABLE_G1S);
#endif
}
static uint64_t arm_gic_mpidr_to_affinity(uint64_t mpidr)
{
uint64_t aff3, aff2, aff1, aff0;
#if defined(CONFIG_ARM)
/* There is no Aff3 in AArch32 MPIDR */
aff3 = 0;
#else
aff3 = MPIDR_AFFLVL(mpidr, 3);
#endif
aff2 = MPIDR_AFFLVL(mpidr, 2);
aff1 = MPIDR_AFFLVL(mpidr, 1);
aff0 = MPIDR_AFFLVL(mpidr, 0);
return (aff3 << 24 | aff2 << 16 | aff1 << 8 | aff0);
}
static bool arm_gic_aff_matching(uint64_t gicr_aff, uint64_t aff)
{
#if defined(CONFIG_GIC_V3_RDIST_MATCHING_AFF0_ONLY)
uint64_t mask = BIT64_MASK(8);
return (gicr_aff & mask) == (aff & mask);
#else
return gicr_aff == aff;
#endif
}
static inline uint64_t arm_gic_get_typer(mem_addr_t addr)
{
uint64_t val;
#if defined(CONFIG_ARM)
val = sys_read32(addr);
val |= (uint64_t)sys_read32(addr + 4) << 32;
#else
val = sys_read64(addr);
#endif
return val;
}
static mem_addr_t arm_gic_iterate_rdists(void)
{
uint64_t aff = arm_gic_mpidr_to_affinity(GET_MPIDR());
for (mem_addr_t rdist_addr = GIC_RDIST_BASE;
rdist_addr < GIC_RDIST_BASE + GIC_RDIST_SIZE;
rdist_addr += 0x20000) {
uint64_t val = arm_gic_get_typer(rdist_addr + GICR_TYPER);
uint64_t gicr_aff = GICR_TYPER_AFFINITY_VALUE_GET(val);
if (arm_gic_aff_matching(gicr_aff, aff)) {
return rdist_addr;
}
if (GICR_TYPER_LAST_GET(val) == 1) {
return (mem_addr_t)NULL;
}
}
return (mem_addr_t)NULL;
}
static void __arm_gic_init(void)
{
uint8_t cpu;
mem_addr_t gic_rd_base;
cpu = arch_curr_cpu()->id;
gic_rd_base = arm_gic_iterate_rdists();
__ASSERT(gic_rd_base != (mem_addr_t)NULL, "");
gic_rdists[cpu] = gic_rd_base;
#ifdef CONFIG_GIC_V3_ITS
/* Enable LPIs in Redistributor */
gicv3_rdist_setup_lpis(gic_get_rdist());
#endif
gicv3_rdist_enable(gic_get_rdist());
gicv3_cpuif_init();
}
int arm_gic_init(const struct device *dev)
{
gicv3_dist_init();
__arm_gic_init();
return 0;
}
DEVICE_DT_INST_DEFINE(0, arm_gic_init, NULL, NULL, NULL,
PRE_KERNEL_1, CONFIG_INTC_INIT_PRIORITY, NULL);
#ifdef CONFIG_SMP
void arm_gic_secondary_init(void)
{
__arm_gic_init();
#ifdef CONFIG_GIC_V3_ITS
/* Map this CPU Redistributor in all the ITS Collection tables */
its_rdist_map();
#endif
}
#endif