zephyr/arch/riscv/core/thread.c
Ederson de Souza be28de692c arch/riscv: Use arch_switch() for context swap
Enable `arch_switch()` as preparation for SMP support. This patch
doesn't try to keep support for old style context swap - only switch
based swap is supported, to keep things simple.

A fair amount of refactoring was done in this patch, specially regarding
the code that decides what to do about the ISR. In RISC-V, ECALL
instructions are used to signalize several events, such as user space
system calls, forced syscall, IRQ offload, return from syscall and
context switch. All those handled by the ISR - which also handles
interrupts. After refactor, this "dispatching" step is done at the
beginning of ISR (just after saving generic registers).

As with other platforms, the thread object itself is used as the thread
"switch handle" for the context swap.

Signed-off-by: Ederson de Souza <ederson.desouza@intel.com>
2022-02-25 19:13:50 -05:00

290 lines
7.4 KiB
C

/*
* Copyright (c) 2016 Jean-Paul Etienne <fractalclone@gmail.com>
* Copyright (c) 2020 BayLibre, SAS
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <ksched.h>
#include <arch/riscv/csr.h>
#include <stdio.h>
#include <core_pmp.h>
#ifdef CONFIG_USERSPACE
/*
* Glogal variable used to know the current mode running.
* Is not boolean because it must match the PMP granularity of the arch.
*/
uint32_t is_user_mode;
bool irq_flag;
#endif
void z_thread_entry_wrapper(k_thread_entry_t thread,
void *arg1,
void *arg2,
void *arg3);
void arch_new_thread(struct k_thread *thread, k_thread_stack_t *stack,
char *stack_ptr, k_thread_entry_t entry,
void *p1, void *p2, void *p3)
{
struct __esf *stack_init;
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
const struct soc_esf soc_esf_init = {SOC_ESF_INIT};
#endif
/* Initial stack frame for thread */
stack_init = (struct __esf *)Z_STACK_PTR_ALIGN(
Z_STACK_PTR_TO_FRAME(struct __esf, stack_ptr)
);
/* Setup the initial stack frame */
stack_init->a0 = (ulong_t)entry;
stack_init->a1 = (ulong_t)p1;
stack_init->a2 = (ulong_t)p2;
stack_init->a3 = (ulong_t)p3;
#ifdef CONFIG_THREAD_LOCAL_STORAGE
stack_init->tp = (ulong_t)thread->tls;
#endif
/*
* Following the RISC-V architecture,
* the MSTATUS register (used to globally enable/disable interrupt),
* as well as the MEPC register (used to by the core to save the
* value of the program counter at which an interrupt/exception occcurs)
* need to be saved on the stack, upon an interrupt/exception
* and restored prior to returning from the interrupt/exception.
* This shall allow to handle nested interrupts.
*
* Given that context switching is performed via a system call exception
* within the RISCV architecture implementation, initially set:
* 1) MSTATUS to MSTATUS_DEF_RESTORE in the thread stack to enable
* interrupts when the newly created thread will be scheduled;
* 2) MEPC to the address of the z_thread_entry_wrapper in the thread
* stack.
* Hence, when going out of an interrupt/exception/context-switch,
* after scheduling the newly created thread:
* 1) interrupts will be enabled, as the MSTATUS register will be
* restored following the MSTATUS value set within the thread stack;
* 2) the core will jump to z_thread_entry_wrapper, as the program
* counter will be restored following the MEPC value set within the
* thread stack.
*/
stack_init->mstatus = MSTATUS_DEF_RESTORE;
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
/* Shared FP mode: enable FPU of threads with K_FP_REGS. */
if ((thread->base.user_options & K_FP_REGS) != 0) {
stack_init->mstatus |= MSTATUS_FS_INIT;
}
stack_init->fp_state = 0;
#elif defined(CONFIG_FPU)
/* Unshared FP mode: enable FPU of each thread. */
stack_init->mstatus |= MSTATUS_FS_INIT;
#endif
#if defined(CONFIG_PMP_STACK_GUARD) || defined(CONFIG_USERSPACE)
/* Clear PMP context if RISC-V PMP is used. */
z_riscv_pmp_init_thread(thread);
#endif /* CONFIG_PMP_STACK_GUARD || CONFIG_USERSPACE */
#if defined(CONFIG_USERSPACE)
/* Clear user thread context */
thread->arch.priv_stack_start = 0;
thread->arch.user_sp = 0;
#endif /* CONFIG_USERSPACE */
/* Assign thread entry point and mstatus.MPRV mode. */
if (IS_ENABLED(CONFIG_USERSPACE)
&& (thread->base.user_options & K_USER)) {
/* User thread */
stack_init->mepc = (ulong_t)k_thread_user_mode_enter;
} else {
/* Supervisor thread */
stack_init->mepc = (ulong_t)z_thread_entry_wrapper;
#if defined(CONFIG_PMP_STACK_GUARD)
/* Enable PMP in mstatus.MPRV mode for RISC-V machine mode
* if thread is supervisor thread.
*/
stack_init->mstatus |= MSTATUS_MPRV;
#endif /* CONFIG_PMP_STACK_GUARD */
}
#if defined(CONFIG_PMP_STACK_GUARD)
/* Setup PMP regions of PMP stack guard of thread. */
z_riscv_init_stack_guard(thread);
#endif /* CONFIG_PMP_STACK_GUARD */
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
stack_init->soc_context = soc_esf_init;
#endif
thread->callee_saved.sp = (ulong_t)stack_init;
thread->switch_handle = thread;
}
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
int arch_float_disable(struct k_thread *thread)
{
unsigned int key;
if (thread != _current) {
return -EINVAL;
}
if (arch_is_in_isr()) {
return -EINVAL;
}
/* Ensure a preemptive context switch does not occur */
key = irq_lock();
/* Disable all floating point capabilities for the thread */
thread->base.user_options &= ~K_FP_REGS;
/* Clear the FS bits to disable the FPU. */
__asm__ volatile (
"mv t0, %0\n"
"csrrc x0, mstatus, t0\n"
:
: "r" (MSTATUS_FS_MASK)
);
irq_unlock(key);
return 0;
}
int arch_float_enable(struct k_thread *thread, unsigned int options)
{
unsigned int key;
if (thread != _current) {
return -EINVAL;
}
if (arch_is_in_isr()) {
return -EINVAL;
}
/* Ensure a preemptive context switch does not occur */
key = irq_lock();
/* Enable all floating point capabilities for the thread. */
thread->base.user_options |= K_FP_REGS;
/* Set the FS bits to Initial to enable the FPU. */
__asm__ volatile (
"mv t0, %0\n"
"csrrs x0, mstatus, t0\n"
:
: "r" (MSTATUS_FS_INIT)
);
irq_unlock(key);
return 0;
}
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
#ifdef CONFIG_USERSPACE
/* Function used by Zephyr to switch a supervisor thread to a user thread */
FUNC_NORETURN void arch_user_mode_enter(k_thread_entry_t user_entry,
void *p1, void *p2, void *p3)
{
arch_syscall_invoke5((uintptr_t) arch_user_mode_enter,
(uintptr_t) user_entry,
(uintptr_t) p1,
(uintptr_t) p2,
(uintptr_t) p3,
FORCE_SYSCALL_ID);
CODE_UNREACHABLE;
}
/*
* User space entry function
*
* This function is the entry point to user mode from privileged execution.
* The conversion is one way, and threads which transition to user mode do
* not transition back later, unless they are doing system calls.
*/
FUNC_NORETURN void z_riscv_user_mode_enter_syscall(k_thread_entry_t user_entry,
void *p1, void *p2, void *p3)
{
ulong_t top_of_user_stack = 0U;
uintptr_t status;
/* Set up privileged stack */
#ifdef CONFIG_GEN_PRIV_STACKS
_current->arch.priv_stack_start =
(ulong_t)z_priv_stack_find(_current->stack_obj);
#else
_current->arch.priv_stack_start =
(ulong_t)(_current->stack_obj) +
Z_RISCV_STACK_GUARD_SIZE;
#endif /* CONFIG_GEN_PRIV_STACKS */
top_of_user_stack = Z_STACK_PTR_ALIGN(
_current->stack_info.start +
_current->stack_info.size -
_current->stack_info.delta);
/* Set next CPU status to user mode */
status = csr_read(mstatus);
status = INSERT_FIELD(status, MSTATUS_MPP, PRV_U);
status = INSERT_FIELD(status, MSTATUS_MPRV, 0);
csr_write(mstatus, status);
csr_write(mepc, z_thread_entry_wrapper);
/* Set up Physical Memory Protection */
#if defined(CONFIG_PMP_STACK_GUARD)
z_riscv_init_stack_guard(_current);
#endif
z_riscv_init_user_accesses(_current);
z_riscv_configure_user_allowed_stack(_current);
is_user_mode = true;
__asm__ volatile ("mv a0, %1"
: "=r" (user_entry)
: "r" (user_entry)
: "memory");
__asm__ volatile ("mv a1, %1"
: "=r" (p1)
: "r" (p1)
: "memory");
__asm__ volatile ("mv a2, %1"
: "=r" (p2)
: "r" (p2)
: "memory");
__asm__ volatile ("mv a3, %1"
: "=r" (p3)
: "r" (p3)
: "memory");
__asm__ volatile ("mv sp, %1"
: "=r" (top_of_user_stack)
: "r" (top_of_user_stack)
: "memory");
__asm__ volatile ("mret");
CODE_UNREACHABLE;
}
#endif /* CONFIG_USERSPACE */