zephyr/kernel/unified/work_q.c
Benjamin Walsh f6ca7de09c kernel/arch: consolidate tTCS and TNANO definitions
There was a lot of duplication between architectures for the definition
of threads and the "nanokernel" guts. These have been consolidated.

Now, a common file kernel/unified/include/kernel_structs.h holds the
common definitions. Architectures provide two files to complement it:
kernel_arch_data.h and kernel_arch_func.h. The first one contains at
least the struct _thread_arch and struct _kernel_arch data structures,
as well as the struct _callee_saved and struct _caller_saved register
layouts. The second file contains anything that needs what is provided
by the common stuff in kernel_structs.h. Those two files are only meant
to be included in kernel_structs.h in very specific locations.

The thread data structure has been separated into three major parts:
common struct _thread_base and struct k_thread, and arch-specific struct
_thread_arch. The first and third ones are included in the second.

The struct s_NANO data structure has been split into two: common struct
_kernel and arch-specific struct _kernel_arch. The latter is included in
the former.

Offsets files have also changed: nano_offsets.h has been renamed
kernel_offsets.h and is still included by the arch-specific offsets.c.
Also, since the thread and kernel data structures are now made of
sub-structures, offsets have to be added to make up the full offset.
Some of these additions have been consolidated in shorter symbols,
available from kernel/unified/include/offsets_short.h, which includes an
arch-specific offsets_arch_short.h. Most of the code include
offsets_short.h now instead of offsets.h.

Change-Id: I084645cb7e6db8db69aeaaf162963fe157045d5a
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-11-12 07:04:52 -05:00

149 lines
3.2 KiB
C

/*
* Copyright (c) 2016 Intel Corporation
* Copyright (c) 2016 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
*
* Workqueue support functions
*/
#include <kernel_structs.h>
#include <wait_q.h>
#include <errno.h>
static void work_q_main(void *work_q_ptr, void *p2, void *p3)
{
struct k_work_q *work_q = work_q_ptr;
ARG_UNUSED(p2);
ARG_UNUSED(p3);
while (1) {
struct k_work *work;
k_work_handler_t handler;
work = k_fifo_get(&work_q->fifo, K_FOREVER);
handler = work->handler;
/* Reset pending state so it can be resubmitted by handler */
if (atomic_test_and_clear_bit(work->flags,
K_WORK_STATE_PENDING)) {
handler(work);
}
/* Make sure we don't hog up the CPU if the FIFO never (or
* very rarely) gets empty.
*/
k_yield();
}
}
void k_work_q_start(struct k_work_q *work_q, char *stack,
unsigned stack_size, unsigned prio)
{
k_fifo_init(&work_q->fifo);
k_thread_spawn(stack, stack_size,
work_q_main, work_q, 0, 0,
prio, 0, 0);
}
#ifdef CONFIG_SYS_CLOCK_EXISTS
static void work_timeout(struct _timeout *t)
{
struct k_delayed_work *w = CONTAINER_OF(t, struct k_delayed_work,
timeout);
/* submit work to workqueue */
k_work_submit_to_queue(w->work_q, &w->work);
}
void k_delayed_work_init(struct k_delayed_work *work, k_work_handler_t handler)
{
k_work_init(&work->work, handler);
_init_timeout(&work->timeout, work_timeout);
work->work_q = NULL;
}
int k_delayed_work_submit_to_queue(struct k_work_q *work_q,
struct k_delayed_work *work,
int32_t delay)
{
int key = irq_lock();
int err;
/* Work cannot be active in multiple queues */
if (work->work_q && work->work_q != work_q) {
err = -EADDRINUSE;
goto done;
}
/* Cancel if work has been submitted */
if (work->work_q == work_q) {
err = k_delayed_work_cancel(work);
if (err < 0) {
goto done;
}
}
/* Attach workqueue so the timeout callback can submit it */
work->work_q = work_q;
if (!delay) {
/* Submit work if no ticks is 0 */
k_work_submit_to_queue(work_q, &work->work);
} else {
/* Add timeout */
_add_timeout(NULL, &work->timeout, NULL,
_TICK_ALIGN + _ms_to_ticks(delay));
}
err = 0;
done:
irq_unlock(key);
return err;
}
int k_delayed_work_cancel(struct k_delayed_work *work)
{
int key = irq_lock();
if (k_work_pending(&work->work)) {
irq_unlock(key);
return -EINPROGRESS;
}
if (!work->work_q) {
irq_unlock(key);
return -EINVAL;
}
/* Abort timeout, if it has expired this will do nothing */
_abort_timeout(&work->timeout);
/* Detach from workqueue */
work->work_q = NULL;
irq_unlock(key);
return 0;
}
#endif /* CONFIG_SYS_CLOCK_EXISTS */