The VS1838B is one of the most found infrared receiver found in electronic kits and is easy to setup with only a single GPIO used for signal transmission (apart from VCC and GND). This new driver let applications use the VS1838B as an input with events relayed as 0x0000<address><command>. Only the NEC protocol is supported in this version but more can be added later. Link: https://github-wiki-see.page/m/CoreELEC/remotes/wiki/08.-NEC-IR-Protocol-Datasheet This has been tested using the input_dump sample. Signed-off-by: Bastien JAUNY <bastien.jauny@smile.fr>
368 lines
13 KiB
C
368 lines
13 KiB
C
/*
|
|
* Copyright (c) 2025 Bastien Jauny <bastien.jauny@smile.fr>
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT vishay_vs1838b
|
|
|
|
#include <zephyr/device.h>
|
|
#include <zephyr/drivers/gpio.h>
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/input/input.h>
|
|
#include <zephyr/kernel.h>
|
|
|
|
LOG_MODULE_REGISTER(input_vs1838b, CONFIG_INPUT_LOG_LEVEL);
|
|
|
|
/* A NEC packet is defined by:
|
|
* - a lead burst (2 edges)
|
|
* - an 8-bit address followed by its logical inverse
|
|
* - an 8-bit command followed by its logical inverse
|
|
* - a trailing burst
|
|
*/
|
|
|
|
/* Constants used for parsing the edges buffer for NEC protocol */
|
|
#define NEC_LEAD_PULSE_EDGE_OFFSET 0
|
|
#define NEC_LEAD_PULSE_EDGE_WIDTH 2
|
|
|
|
#define NEC_ADDRESS_BYTE_EDGE_OFFSET (NEC_LEAD_PULSE_EDGE_OFFSET + NEC_LEAD_PULSE_EDGE_WIDTH)
|
|
#define NEC_ADDRESS_BYTE_EDGE_WIDTH (2 * BITS_PER_BYTE)
|
|
|
|
#define NEC_REVERSE_ADDRESS_BYTE_EDGE_OFFSET \
|
|
(NEC_ADDRESS_BYTE_EDGE_OFFSET + NEC_ADDRESS_BYTE_EDGE_WIDTH)
|
|
#define NEC_REVERSE_ADDRESS_BYTE_EDGE_WIDTH (2 * BITS_PER_BYTE)
|
|
|
|
#define NEC_COMMAND_BYTE_EDGE_OFFSET \
|
|
(NEC_REVERSE_ADDRESS_BYTE_EDGE_OFFSET + NEC_REVERSE_ADDRESS_BYTE_EDGE_WIDTH)
|
|
#define NEC_COMMAND_BYTE_EDGE_WIDTH (2 * BITS_PER_BYTE)
|
|
|
|
#define NEC_REVERSE_COMMAND_BYTE_EDGE_OFFSET \
|
|
(NEC_COMMAND_BYTE_EDGE_OFFSET + NEC_COMMAND_BYTE_EDGE_WIDTH)
|
|
#define NEC_REVERSE_COMMAND_BYTE_EDGE_WIDTH (2 * BITS_PER_BYTE)
|
|
|
|
#define NEC_SINGLE_COMMAND_EDGES_COUNT \
|
|
(NEC_REVERSE_COMMAND_BYTE_EDGE_OFFSET + NEC_REVERSE_COMMAND_BYTE_EDGE_WIDTH + 2)
|
|
|
|
/* NEC protocol values */
|
|
#define NEC_LEAD_PULSE_PERIOD_ON_USEC 9000
|
|
#define NEC_LEAD_PULSE_PERIOD_OFF_USEC 4500
|
|
#define NEC_BIT_DETECT_PERIOD_NSEC 562500
|
|
#define NEC_BIT_DETECT_PERIOD_USEC (NEC_BIT_DETECT_PERIOD_NSEC / NSEC_PER_USEC)
|
|
#define NEC_BIT_0_TOTAL_PERIOD_USEC 1125
|
|
#define NEC_BIT_1_TOTAL_PERIOD_USEC 2250
|
|
/* Total delay between a command and a repeat code is 108ms
|
|
* and total time of a command is 67.5ms
|
|
*/
|
|
#define NEC_TIMEOUT_REPEAT_CODE_MSEC (108 - 67)
|
|
|
|
/* Macros to define tick ranges based on a millisecond tolerance */
|
|
#define VS1838B_MIN_TICK(usec, tol) \
|
|
((((usec) - (tol)) * CONFIG_SYS_CLOCK_TICKS_PER_SEC) / USEC_PER_SEC)
|
|
#define VS1838B_MAX_TICK(usec, tol) \
|
|
((((usec) + (tol)) * CONFIG_SYS_CLOCK_TICKS_PER_SEC) / USEC_PER_SEC)
|
|
|
|
/* Empiric tolerance values. Might be a good idea to put them in the Kconfig? */
|
|
#define VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC 400
|
|
#define VS1838B_NEC_BIT_DETECT_PERIOD_TOLERANCE_USEC 150
|
|
#define VS1838B_NEC_BIT_0_TOTAL_TOLERANCE_USEC 200
|
|
#define VS1838B_NEC_BIT_1_TOTAL_TOLERANCE_USEC 200
|
|
|
|
/* Tick ranges for the NEC elements */
|
|
#define VS1838B_NEC_LEAD_PULSE_ON_MIN_TICK \
|
|
VS1838B_MIN_TICK(NEC_LEAD_PULSE_PERIOD_ON_USEC, \
|
|
VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC)
|
|
#define VS1838B_NEC_LEAD_PULSE_ON_MAX_TICK \
|
|
VS1838B_MAX_TICK(NEC_LEAD_PULSE_PERIOD_ON_USEC, \
|
|
VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC)
|
|
|
|
#define VS1838B_NEC_LEAD_PULSE_OFF_MIN_TICK \
|
|
VS1838B_MIN_TICK(NEC_LEAD_PULSE_PERIOD_OFF_USEC, \
|
|
VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC)
|
|
#define VS1838B_NEC_LEAD_PULSE_OFF_MAX_TICK \
|
|
VS1838B_MAX_TICK(NEC_LEAD_PULSE_PERIOD_OFF_USEC, \
|
|
VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC)
|
|
|
|
#define VS1838B_NEC_BIT_DETECT_MIN_TICK \
|
|
VS1838B_MIN_TICK(NEC_BIT_DETECT_PERIOD_USEC, VS1838B_NEC_BIT_DETECT_PERIOD_TOLERANCE_USEC)
|
|
#define VS1838B_NEC_BIT_DETECT_MAX_TICK \
|
|
VS1838B_MAX_TICK(NEC_BIT_DETECT_PERIOD_USEC, VS1838B_NEC_BIT_DETECT_PERIOD_TOLERANCE_USEC)
|
|
|
|
#define VS1838B_NEC_BIT_0_TOTAL_MIN_TICK \
|
|
VS1838B_MIN_TICK(NEC_BIT_0_TOTAL_PERIOD_USEC, VS1838B_NEC_BIT_0_TOTAL_TOLERANCE_USEC)
|
|
#define VS1838B_NEC_BIT_0_TOTAL_MAX_TICK \
|
|
VS1838B_MAX_TICK(NEC_BIT_0_TOTAL_PERIOD_USEC, VS1838B_NEC_BIT_0_TOTAL_TOLERANCE_USEC)
|
|
|
|
#define VS1838B_NEC_BIT_1_TOTAL_MIN_TICK \
|
|
VS1838B_MIN_TICK(NEC_BIT_1_TOTAL_PERIOD_USEC, VS1838B_NEC_BIT_1_TOTAL_TOLERANCE_USEC)
|
|
#define VS1838B_NEC_BIT_1_TOTAL_MAX_TICK \
|
|
VS1838B_MAX_TICK(NEC_BIT_1_TOTAL_PERIOD_USEC, VS1838B_NEC_BIT_1_TOTAL_TOLERANCE_USEC)
|
|
|
|
struct vs1838b_data {
|
|
struct device const *dev;
|
|
struct gpio_callback input_cb;
|
|
struct k_work_delayable decode_work;
|
|
int64_t edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT];
|
|
uint8_t edges_count;
|
|
struct k_sem decode_sem;
|
|
};
|
|
|
|
struct vs1838b_config {
|
|
struct gpio_dt_spec input;
|
|
};
|
|
|
|
static inline bool is_within_range(k_ticks_t const ticks, k_ticks_t const min, k_ticks_t const max)
|
|
{
|
|
return (ticks <= max) && (ticks >= min);
|
|
}
|
|
|
|
static bool read_byte_from(int64_t *const edges_ticks, uint8_t const offset, uint8_t *byte)
|
|
{
|
|
/* Make sure we add bits from 0 */
|
|
uint8_t temp_byte = 0;
|
|
k_ticks_t ticks_on;
|
|
k_ticks_t ticks_total;
|
|
|
|
/* Bytes are transmitted LSB first */
|
|
for (uint8_t i = 0; i < BITS_PER_BYTE; ++i) {
|
|
/*
|
|
* To detect bits and their values we analyze:
|
|
* - the initial pulse width
|
|
* - the total period
|
|
*/
|
|
ticks_on = edges_ticks[(2 * i) + offset + 1] - edges_ticks[(2 * i) + offset];
|
|
ticks_total = edges_ticks[(2 * i) + offset + 2] - edges_ticks[(2 * i) + offset];
|
|
|
|
LOG_DBG("ticks_on %lld", ticks_on);
|
|
LOG_DBG("ticks_total %lld", ticks_total);
|
|
if (is_within_range(ticks_on, VS1838B_NEC_BIT_DETECT_MIN_TICK,
|
|
VS1838B_NEC_BIT_DETECT_MAX_TICK)) {
|
|
if (is_within_range(ticks_total, VS1838B_NEC_BIT_0_TOTAL_MIN_TICK,
|
|
VS1838B_NEC_BIT_0_TOTAL_MAX_TICK)) {
|
|
/* 0 detected */
|
|
} else if (is_within_range(ticks_total, VS1838B_NEC_BIT_1_TOTAL_MIN_TICK,
|
|
VS1838B_NEC_BIT_1_TOTAL_MAX_TICK)) {
|
|
/* 1 detected */
|
|
temp_byte += BIT(i);
|
|
} else {
|
|
LOG_WRN("Failed to identify detected bit at position %u", i);
|
|
return false;
|
|
}
|
|
} else {
|
|
LOG_WRN("Failed to detect a valid bit at position %u", i);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
*byte = temp_byte;
|
|
return true;
|
|
}
|
|
|
|
static bool detect_leading_burst(int64_t *const edges_ticks)
|
|
{
|
|
/* Detect leading pulse using the first 3 edges */
|
|
int64_t lead_ticks_on = edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 1] -
|
|
edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET];
|
|
int64_t lead_ticks_off = edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 2] -
|
|
edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 1];
|
|
|
|
/* Manage the corner case of an overflow */
|
|
if ((lead_ticks_on < 0) || (lead_ticks_off < 0)) {
|
|
LOG_ERR("Ticks overflow: %lld - %lld - %lld",
|
|
edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET],
|
|
edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 1],
|
|
edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 2]);
|
|
return false;
|
|
}
|
|
|
|
LOG_DBG("Read %lld ticks on and %lld ticks off", lead_ticks_on, lead_ticks_off);
|
|
|
|
return is_within_range(lead_ticks_on, VS1838B_NEC_LEAD_PULSE_ON_MIN_TICK,
|
|
VS1838B_NEC_LEAD_PULSE_ON_MAX_TICK) &&
|
|
is_within_range(lead_ticks_off, VS1838B_NEC_LEAD_PULSE_OFF_MIN_TICK,
|
|
VS1838B_NEC_LEAD_PULSE_OFF_MAX_TICK);
|
|
}
|
|
|
|
static bool read_redundant_byte(int64_t *const edges_ticks, uint8_t *const byte,
|
|
uint32_t const offset)
|
|
{
|
|
uint8_t temp_byte;
|
|
uint8_t reverse_byte;
|
|
|
|
if (read_byte_from(edges_ticks, offset, &temp_byte) &&
|
|
read_byte_from(edges_ticks, offset + (2 * BITS_PER_BYTE), &reverse_byte)) {
|
|
if (temp_byte == (uint8_t)(~reverse_byte)) {
|
|
*byte = temp_byte;
|
|
} else {
|
|
LOG_ERR("Error while decoding byte");
|
|
return false;
|
|
}
|
|
} else {
|
|
LOG_ERR("Error while reading bytes");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool read_address_byte(int64_t *const edges_ticks, uint8_t *const address)
|
|
{
|
|
return read_redundant_byte(edges_ticks, address, NEC_ADDRESS_BYTE_EDGE_OFFSET);
|
|
}
|
|
|
|
static bool read_command_byte(int64_t *const edges_ticks, uint8_t *const command)
|
|
{
|
|
return read_redundant_byte(edges_ticks, command, NEC_COMMAND_BYTE_EDGE_OFFSET);
|
|
}
|
|
|
|
static bool detect_last_burst(int64_t *const edges_ticks)
|
|
{
|
|
/* Detect leading pulse using the last 3 edges */
|
|
int64_t burst_length = edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT - 1] -
|
|
edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT - 2];
|
|
|
|
/* Manage the corner case of an overflow */
|
|
if (burst_length < 0) {
|
|
LOG_ERR("Ticks overflow: %lld - %lld",
|
|
edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT - 1],
|
|
edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT - 2]);
|
|
return false;
|
|
}
|
|
|
|
LOG_DBG("Read %lld ticks in the last burst", burst_length);
|
|
|
|
return is_within_range(burst_length, VS1838B_NEC_BIT_DETECT_MIN_TICK,
|
|
VS1838B_NEC_BIT_DETECT_MAX_TICK);
|
|
}
|
|
|
|
static bool get_address_and_command(int64_t *const edges_ticks, uint8_t *const address,
|
|
uint8_t *const command)
|
|
{
|
|
if (!detect_leading_burst(edges_ticks)) {
|
|
LOG_DBG("No lead detected");
|
|
return false;
|
|
}
|
|
|
|
if (!read_address_byte(edges_ticks, address)) {
|
|
LOG_DBG("No address decoded");
|
|
return false;
|
|
}
|
|
|
|
if (!read_command_byte(edges_ticks, command)) {
|
|
LOG_DBG("No command decoded");
|
|
return false;
|
|
}
|
|
if (!detect_last_burst(edges_ticks)) {
|
|
LOG_DBG("No trailing edge detected");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Management of the decoding
|
|
*/
|
|
static void vs1838b_decode_work_handler(struct k_work *item)
|
|
{
|
|
struct k_work_delayable *dwork = k_work_delayable_from_work(item);
|
|
struct vs1838b_data *data = CONTAINER_OF(dwork, struct vs1838b_data, decode_work);
|
|
|
|
if (k_sem_take(&data->decode_sem, K_FOREVER) == 0) {
|
|
uint8_t address_byte;
|
|
uint8_t command_byte;
|
|
|
|
if (get_address_and_command(data->edges_ticks, &address_byte, &command_byte)) {
|
|
LOG_DBG("Address: [0x%X] | Command: [0x%X]", address_byte, command_byte);
|
|
if (input_report(data->dev, INPUT_EV_DEVICE, INPUT_MSC_SCAN,
|
|
(address_byte << 8) | command_byte, true, K_FOREVER) < 0) {
|
|
LOG_ERR("Message failed to be enqueued");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reset the record */
|
|
data->edges_count = 0;
|
|
k_sem_give(&data->decode_sem);
|
|
}
|
|
|
|
/*
|
|
* Internal callback
|
|
*/
|
|
static void vs1838b_input_callback(struct device const *dev, struct gpio_callback *cb,
|
|
uint32_t pins)
|
|
{
|
|
/*
|
|
* We want to:
|
|
* - register the timestamps of interrupts
|
|
* - try and decode the received bits when we reach the appropriate threshold
|
|
*/
|
|
int64_t const tick = k_uptime_ticks();
|
|
struct vs1838b_data *data = CONTAINER_OF(cb, struct vs1838b_data, input_cb);
|
|
|
|
/* If we already schedule a decode, we need to cancel it. */
|
|
if (k_work_cancel_delayable(&data->decode_work) != 0) {
|
|
LOG_WRN("Decoding not cancelled!");
|
|
}
|
|
|
|
if (k_sem_take(&data->decode_sem, K_NO_WAIT) != 0) {
|
|
/* Decoding might be pending */
|
|
return;
|
|
}
|
|
|
|
/* If more interrupts are received, they're likely to be repeat codes
|
|
* and we choose to ignore them.
|
|
*/
|
|
if (data->edges_count < NEC_SINGLE_COMMAND_EDGES_COUNT) {
|
|
data->edges_ticks[data->edges_count++] = tick;
|
|
}
|
|
|
|
if (data->edges_count == NEC_SINGLE_COMMAND_EDGES_COUNT) {
|
|
/* There's a candidate!
|
|
* If nothing gets in during the grace period
|
|
* it *should* be an entire command.
|
|
*/
|
|
k_work_schedule(&data->decode_work, K_MSEC(NEC_TIMEOUT_REPEAT_CODE_MSEC));
|
|
}
|
|
k_sem_give(&data->decode_sem);
|
|
}
|
|
|
|
static int vs1838b_init(struct device const *dev)
|
|
{
|
|
struct vs1838b_config const *config = dev->config;
|
|
struct gpio_dt_spec const *data_input = &config->input;
|
|
struct vs1838b_data *data = dev->data;
|
|
|
|
data->dev = dev;
|
|
|
|
if (!gpio_is_ready_dt(data_input)) {
|
|
LOG_ERR("GPIO input pin is not ready");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Setup the input as an interrupt source
|
|
* and register an associated callback.
|
|
*/
|
|
gpio_pin_configure_dt(data_input, GPIO_INPUT);
|
|
gpio_pin_interrupt_configure_dt(data_input, GPIO_INT_EDGE_BOTH);
|
|
gpio_init_callback(&data->input_cb, vs1838b_input_callback, BIT(data_input->pin));
|
|
gpio_add_callback_dt(data_input, &data->input_cb);
|
|
|
|
k_sem_init(&data->decode_sem, 1, 1);
|
|
k_work_init_delayable(&data->decode_work, vs1838b_decode_work_handler);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define VS1838B_DEFINE(inst) \
|
|
static struct vs1838b_data vs1838b_data_##inst; \
|
|
\
|
|
static struct vs1838b_config const vs1838b_config_##inst = { \
|
|
.input = GPIO_DT_SPEC_INST_GET(inst, data_gpios), \
|
|
}; \
|
|
\
|
|
DEVICE_DT_INST_DEFINE(inst, vs1838b_init, NULL, &vs1838b_data_##inst, \
|
|
&vs1838b_config_##inst, POST_KERNEL, CONFIG_INPUT_INIT_PRIORITY, \
|
|
NULL);
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(VS1838B_DEFINE)
|