/* * Copyright (c) 2019 Intel Corporation * Copyright (c) 2019 Microchip Technology Incorporated * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include BUILD_ASSERT_MSG(!IS_ENABLED(CONFIG_SMP), "XEC RTOS timer doesn't support SMP"); BUILD_ASSERT_MSG(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 32768, "XEC RTOS timer HW frequency is fixed at 32768"); #define DEBUG_RTOS_TIMER 0 #if DEBUG_RTOS_TIMER != 0 /* Enable feature to halt timer on JTAG/SWD CPU halt */ #define TIMER_START_VAL (MCHP_RTMR_CTRL_BLK_EN | MCHP_RTMR_CTRL_START \ | MCHP_RTMR_CTRL_HW_HALT_EN) #else #define TIMER_START_VAL (MCHP_RTMR_CTRL_BLK_EN | MCHP_RTMR_CTRL_START) #endif /* * Overview: * * This driver enables the Microchip XEC 32KHz based RTOS timer as the Zephyr * system timer. It supports both legacy ("tickful") mode as well as * TICKLESS_KERNEL. The XEC RTOS timer is a down counter with a fixed * frequency of 32768 Hz. The driver is based upon the Intel local APIC * timer driver. * Configuration: * * CONFIG_MCHP_XEC_RTOS_TIMER=y * * CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC= must be set to 32768. * * To reduce truncation errors from accumalating due to conversion * to/from time, ticks, and HW cycles set ticks per second equal to * the frequency. With tickless kernel mode enabled the kernel will not * program a periodic timer at this fast rate. * CONFIG_SYS_CLOCK_TICKS_PER_SEC=32768 */ #define CYCLES_PER_TICK \ (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC) #define CPT1000 ((CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC * 1000UL) \ / CONFIG_SYS_CLOCK_TICKS_PER_SEC) #define CPT_FRACT (CPT1000 - (CYCLES_PER_TICK * 1000UL)) /* max number of ticks we can load into the timer in one shot */ #define MAX_TICKS (0x7FFFFFFFU / CYCLES_PER_TICK) /* * The spinlock protects all access to the RTMR registers, as well as * 'total_cycles', 'last_announcement', and 'cached_icr'. * * One important invariant that must be observed: `total_cycles` + `cached_icr` * is always an integral multiple of CYCLE_PER_TICK; this is, timer interrupts * are only ever scheduled to occur at tick boundaries. */ static struct k_spinlock lock; static u64_t total_cycles; static u32_t cached_icr = CYCLES_PER_TICK; /* * Restart XEC RTOS timer with new count down value. * This timer requires its control register to be cleared, the new * preload value written twice, and timer started. */ static INLINE void timer_restart(u32_t val) { RTMR_REGS->CTRL = 0; RTMR_REGS->PRLD = val; RTMR_REGS->PRLD = val; RTMR_REGS->CTRL = TIMER_START_VAL; } #ifdef CONFIG_TICKLESS_KERNEL static u64_t last_announcement; /* last time we called z_clock_announce() */ /* * Request a timeout n Zephyr ticks in the future from now. * Requested number of ticks in the future of n <= 1 means the kernel wants * the tick announced as soon as possible, ideally no more than one tick * in the future. * * Per comment below we don't clear RTMR pending interrupt. * RTMR counter register is read-only and is loaded from the preload * register by a 0->1 transition of the control register start bit. * Writing a new value to preload only takes effect once the count * register reaches 0. */ void z_clock_set_timeout(s32_t n, bool idle) { ARG_UNUSED(idle); u32_t ccr, temp; int full_ticks; /* number of complete ticks we'll wait */ u32_t full_cycles; /* full_ticks represented as cycles */ u32_t partial_cycles; /* number of cycles to first tick boundary */ if (n < 1) { full_ticks = 0; } else if ((n == K_FOREVER) || (n > MAX_TICKS)) { full_ticks = MAX_TICKS - 1; } else { full_ticks = n - 1; } /* * RTMR frequency is fixed at 32KHz resulting in truncation errors. * Tune the denominator taking into account delay in the caller and * this routine. */ full_cycles = (full_ticks * CYCLES_PER_TICK) + ((full_ticks * CPT_FRACT) / 1000UL); /* * There's a wee race condition here. The timer may expire while * we're busy reprogramming it; an interrupt will be queued at the * NVIC and the ISR will be called too early, roughly right * after we unlock, and not because the count we just programmed has * counted down. We can detect this situation only by using one-shot * mode. The counter will be 0 for a "real" interrupt and non-zero * if we have restarted the timer here. */ k_spinlock_key_t key = k_spin_lock(&lock); ccr = RTMR_REGS->CNT; total_cycles += (cached_icr - ccr); partial_cycles = CYCLES_PER_TICK - (total_cycles % CYCLES_PER_TICK); temp = full_cycles + partial_cycles; timer_restart(temp); cached_icr = temp; k_spin_unlock(&lock, key); } /* * Return the number of Zephyr ticks elapsed from last call to * z_clock_announce in the ISR. */ u32_t z_clock_elapsed(void) { u32_t ccr; u32_t ticks; k_spinlock_key_t key = k_spin_lock(&lock); ccr = RTMR_REGS->CNT; ticks = total_cycles - last_announcement; ticks += cached_icr - ccr; k_spin_unlock(&lock, key); ticks /= CYCLES_PER_TICK; return ticks; } static void xec_rtos_timer_isr(void *arg) { ARG_UNUSED(arg); u32_t cycles, preload; s32_t ticks; k_spinlock_key_t key = k_spin_lock(&lock); /* * Clear RTOS timer interrupt RW/1C status in GIRQ23 source register. * NVIC will clear its pending bit on ISR exit. */ GIRQ23_REGS->SRC = MCHP_RTMR_GIRQ_VAL; /* * If we get here and the RTMR count registers isn't zero, then * this interrupt is stale: it was queued while z_clock_set_timeout() * was setting a new counter. Just ignore it. See above for more info. */ if (RTMR_REGS->CNT != 0) { k_spin_unlock(&lock, key); return; } /* restart the timer */ preload = MAX_TICKS * CYCLES_PER_TICK; timer_restart(preload); cycles = cached_icr; cached_icr = preload; total_cycles += cycles; ticks = (total_cycles - last_announcement) / CYCLES_PER_TICK; last_announcement = total_cycles; k_spin_unlock(&lock, key); z_clock_announce(ticks); } #else /* Non-tickless kernel build. */ static void xec_rtos_timer_isr(void *arg) { ARG_UNUSED(arg); k_spinlock_key_t key = k_spin_lock(&lock); /* * Clear RTOS timer interrupt status RW/1C status in GIRQ23 register. * NVIC will clear its pending bit on ISR exit. */ GIRQ23_REGS->SRC = MCHP_RTMR_GIRQ_VAL; total_cycles += CYCLES_PER_TICK; timer_restart(cached_icr); k_spin_unlock(&lock, key); z_clock_announce(1); } u32_t z_clock_elapsed(void) { return 0U; } #endif /* CONFIG_TICKLESS_KERNEL */ /* * Return an increasing hardware cycle count. * Implementation: We return current total number of cycles elapsed * from first start of the timer. The return value is 32-bits * resulting in only the lower 32-bits of the total count * being returned. */ u32_t z_timer_cycle_get_32(void) { u32_t ret; u32_t ccr; k_spinlock_key_t key = k_spin_lock(&lock); ccr = RTMR_REGS->CNT; ret = total_cycles + (cached_icr - ccr); k_spin_unlock(&lock, key); return ret; } int z_clock_driver_init(struct device *device) { ARG_UNUSED(device); mchp_pcr_periph_slp_ctrl(PCR_RTMR, MCHP_PCR_SLEEP_DIS); RTMR_REGS->CTRL = 0U; GIRQ23_REGS->SRC = MCHP_RTMR_GIRQ_VAL; NVIC_ClearPendingIRQ(RTMR_IRQn); timer_restart(cached_icr); IRQ_CONNECT(RTMR_IRQn, 1, xec_rtos_timer_isr, 0, 0); GIRQ23_REGS->EN_SET = MCHP_RTMR_GIRQ_VAL; RTMR_REGS->CTRL = TIMER_START_VAL; irq_enable(RTMR_IRQn); return 0; }