/* ec_dsa.c - TinyCrypt implementation of EC-DSA */ /* * Copyright (C) 2015 by Intel Corporation, All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include extern uint32_t curve_n[NUM_ECC_DIGITS]; extern EccPoint curve_G; extern uint32_t curve_nb[NUM_ECC_DIGITS + 1]; int32_t ecdsa_sign(uint32_t r[NUM_ECC_DIGITS], uint32_t s[NUM_ECC_DIGITS], uint32_t p_privateKey[NUM_ECC_DIGITS], uint32_t p_random[NUM_ECC_DIGITS], uint32_t p_hash[NUM_ECC_DIGITS]) { uint32_t k[NUM_ECC_DIGITS], tmp[NUM_ECC_DIGITS]; EccPoint p_point; EccPointJacobi P; if (vli_isZero(p_random)) { return TC_CRYPTO_FAIL; /* The random number must not be 0. */ } vli_set(k, p_random); vli_sub(tmp, k, curve_n, NUM_ECC_DIGITS); vli_cond_set(k, k, tmp, vli_cmp(curve_n, k, NUM_ECC_DIGITS) == 1); /* tmp = k * G */ EccPoint_mult(&P, &curve_G, k); EccPoint_toAffine(&p_point, &P); /* r = x1 (mod n) */ vli_set(r, p_point.x); if (vli_cmp(curve_n, r, NUM_ECC_DIGITS) != 1) { vli_sub(r, r, curve_n, NUM_ECC_DIGITS); } if (vli_isZero(r)) { return TC_CRYPTO_FAIL; /* If r == 0, fail (need a different random number). */ } vli_modMult(s, r, p_privateKey, curve_n, curve_nb); /* s = r*d */ vli_modAdd(s, p_hash, s, curve_n); /* s = e + r*d */ vli_modInv(k, k, curve_n, curve_nb); /* k = 1 / k */ vli_modMult(s, s, k, curve_n, curve_nb); /* s = (e + r*d) / k */ return TC_CRYPTO_SUCCESS; } int32_t ecdsa_verify(EccPoint *p_publicKey, uint32_t p_hash[NUM_ECC_DIGITS], uint32_t r[NUM_ECC_DIGITS], uint32_t s[NUM_ECC_DIGITS]) { uint32_t u1[NUM_ECC_DIGITS], u2[NUM_ECC_DIGITS]; uint32_t z[NUM_ECC_DIGITS]; EccPointJacobi P, R; EccPoint p_point; if (vli_isZero(r) || vli_isZero(s)) { return TC_CRYPTO_FAIL; /* r, s must not be 0. */ } if ((vli_cmp(curve_n, r, NUM_ECC_DIGITS) != 1) || (vli_cmp(curve_n, s, NUM_ECC_DIGITS) != 1)) { return TC_CRYPTO_FAIL; /* r, s must be < n. */ } /* Calculate u1 and u2. */ vli_modInv(z, s, curve_n, curve_nb); /* Z = s^-1 */ vli_modMult(u1, p_hash, z, curve_n, curve_nb); /* u1 = e/s */ vli_modMult(u2, r, z, curve_n, curve_nb); /* u2 = r/s */ /* calculate P = u1*G + u2*Q */ EccPoint_mult(&P, &curve_G, u1); EccPoint_mult(&R, p_publicKey, u2); EccPoint_add(&P, &R); EccPoint_toAffine(&p_point, &P); /* Accept only if P.x == r. */ vli_cond_set( p_point.x, p_point.x, z, vli_sub(z, p_point.x, curve_n, NUM_ECC_DIGITS)); return (vli_cmp(p_point.x, r, NUM_ECC_DIGITS) == 0); }