/* ec_dh.c - TinyCrypt implementation of EC-DH */ /* * Copyright (C) 2015 by Intel Corporation, All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include extern uint32_t curve_p[NUM_ECC_DIGITS]; extern uint32_t curve_b[NUM_ECC_DIGITS]; extern uint32_t curve_n[NUM_ECC_DIGITS]; extern EccPoint curve_G; int32_t ecc_make_key(EccPoint *p_publicKey, uint32_t p_privateKey[NUM_ECC_DIGITS], uint32_t p_random[NUM_ECC_DIGITS]) { /* Make sure the private key is in the range [1, n-1]. * For the supported curve, n is always large enough * that we only need to subtract once at most. */ uint32_t p_tmp[NUM_ECC_DIGITS]; vli_set(p_privateKey, p_random); vli_sub(p_tmp, p_privateKey, curve_n, NUM_ECC_DIGITS); vli_cond_set(p_privateKey, p_privateKey, p_tmp, vli_cmp(curve_n, p_privateKey, NUM_ECC_DIGITS) == 1); if (vli_isZero(p_privateKey)) { return TC_CRYPTO_FAIL; /* The private key cannot be 0 (mod p). */ } EccPointJacobi P; EccPoint_mult(&P, &curve_G, p_privateKey); EccPoint_toAffine(p_publicKey, &P); return TC_CRYPTO_SUCCESS; } /* Compute p_result = x^3 - 3x + b */ static void curve_x_side(uint32_t p_result[NUM_ECC_DIGITS], uint32_t x[NUM_ECC_DIGITS]) { uint32_t _3[NUM_ECC_DIGITS] = {3}; /* -a = 3 */ vli_modSquare_fast(p_result, x); /* r = x^2 */ vli_modSub(p_result, p_result, _3, curve_p); /* r = x^2 - 3 */ vli_modMult_fast(p_result, p_result, x); /* r = x^3 - 3x */ vli_modAdd(p_result, p_result, curve_b, curve_p); /* r = x^3 - 3x + b */ } int32_t ecc_valid_public_key(EccPoint *p_publicKey) { uint32_t l_tmp1[NUM_ECC_DIGITS]; uint32_t l_tmp2[NUM_ECC_DIGITS]; if (EccPoint_isZero(p_publicKey)) { return -1; } if ((vli_cmp(curve_p, p_publicKey->x, NUM_ECC_DIGITS) != 1) || (vli_cmp(curve_p, p_publicKey->y, NUM_ECC_DIGITS) != 1)) { return -2; } vli_modSquare_fast(l_tmp1, p_publicKey->y); /* tmp1 = y^2 */ curve_x_side(l_tmp2, p_publicKey->x); /* tmp2 = x^3 - 3x + b */ /* Make sure that y^2 == x^3 + ax + b */ if (vli_cmp(l_tmp1, l_tmp2, NUM_ECC_DIGITS) != 0) { return -3; } return 0; } int32_t ecdh_shared_secret(uint32_t p_secret[NUM_ECC_DIGITS], EccPoint *p_publicKey, uint32_t p_privateKey[NUM_ECC_DIGITS]) { EccPoint p_point; EccPointJacobi P; EccPoint_mult(&P, p_publicKey, p_privateKey); if (EccPointJacobi_isZero(&P)) { return TC_CRYPTO_FAIL; } EccPoint_toAffine(&p_point, &P); vli_set(p_secret, p_point.x); return TC_CRYPTO_SUCCESS; }