/* * Copyright (c) 2016 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #define STACK_SIZE 1024 #define PIPE_LEN 16 #define BYTES_TO_WRITE 4 #define BYTES_TO_READ BYTES_TO_WRITE K_MEM_POOL_DEFINE(mpool, BYTES_TO_WRITE, PIPE_LEN, 1, BYTES_TO_WRITE); static ZTEST_DMEM unsigned char __aligned(4) data[] = "abcd1234$%^&PIPE"; /**TESTPOINT: init via K_PIPE_DEFINE*/ K_PIPE_DEFINE(kpipe, PIPE_LEN, 4); K_PIPE_DEFINE(khalfpipe, (PIPE_LEN / 2), 4); K_PIPE_DEFINE(kpipe1, PIPE_LEN, 4); K_PIPE_DEFINE(pipe_test_alloc, PIPE_LEN, 4); struct k_pipe pipe; K_THREAD_STACK_DEFINE(tstack, STACK_SIZE); K_THREAD_STACK_DEFINE(tstack1, STACK_SIZE); K_THREAD_STACK_DEFINE(tstack2, STACK_SIZE); struct k_thread tdata; struct k_thread tdata1; struct k_thread tdata2; K_SEM_DEFINE(end_sema, 0, 1); /* By design, only two blocks. We should never need more than that, one * to allocate the pipe object, one for its buffer. Both should be auto- * released when the thread exits */ K_MEM_POOL_DEFINE(test_pool, 128, 128, 4, 4); static void tpipe_put(struct k_pipe *ppipe, int timeout) { size_t to_wt, wt_byte = 0; for (int i = 0; i < PIPE_LEN; i += wt_byte) { /**TESTPOINT: pipe put*/ to_wt = (PIPE_LEN - i) >= BYTES_TO_WRITE ? BYTES_TO_WRITE : (PIPE_LEN - i); zassert_false(k_pipe_put(ppipe, &data[i], to_wt, &wt_byte, 1, timeout), NULL); zassert_true(wt_byte == to_wt || wt_byte == 1, NULL); } } static void tpipe_block_put(struct k_pipe *ppipe, struct k_sem *sema, int timeout) { struct k_mem_block block; for (int i = 0; i < PIPE_LEN; i += BYTES_TO_WRITE) { /**TESTPOINT: pipe block put*/ zassert_equal(k_mem_pool_alloc(&mpool, &block, BYTES_TO_WRITE, timeout), 0, NULL); memcpy(block.data, &data[i], BYTES_TO_WRITE); k_pipe_block_put(ppipe, &block, BYTES_TO_WRITE, sema); if (sema) { k_sem_take(sema, K_FOREVER); } k_mem_pool_free(&block); } } static void tpipe_get(struct k_pipe *ppipe, int timeout) { unsigned char rx_data[PIPE_LEN]; size_t to_rd, rd_byte = 0; /*get pipe data from "pipe_put"*/ for (int i = 0; i < PIPE_LEN; i += rd_byte) { /**TESTPOINT: pipe get*/ to_rd = (PIPE_LEN - i) >= BYTES_TO_READ ? BYTES_TO_READ : (PIPE_LEN - i); zassert_false(k_pipe_get(ppipe, &rx_data[i], to_rd, &rd_byte, 1, timeout), NULL); zassert_true(rd_byte == to_rd || rd_byte == 1, NULL); } for (int i = 0; i < PIPE_LEN; i++) { zassert_equal(rx_data[i], data[i], NULL); } } static void tThread_entry(void *p1, void *p2, void *p3) { tpipe_get((struct k_pipe *)p1, K_FOREVER); k_sem_give(&end_sema); tpipe_put((struct k_pipe *)p1, K_NO_WAIT); k_sem_give(&end_sema); } static void tThread_block_put(void *p1, void *p2, void *p3) { tpipe_block_put((struct k_pipe *)p1, (struct k_sem *)p2, K_NO_WAIT); k_sem_give(&end_sema); } static void tpipe_thread_thread(struct k_pipe *ppipe) { /**TESTPOINT: thread-thread data passing via pipe*/ k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE, tThread_entry, ppipe, NULL, NULL, K_PRIO_PREEMPT(0), K_INHERIT_PERMS | K_USER, 0); tpipe_put(ppipe, K_NO_WAIT); k_sem_take(&end_sema, K_FOREVER); k_sem_take(&end_sema, K_FOREVER); tpipe_get(ppipe, K_FOREVER); /* clear the spawned thread avoid side effect */ k_thread_abort(tid); } static void tpipe_kthread_to_kthread(struct k_pipe *ppipe) { /**TESTPOINT: thread-thread data passing via pipe*/ k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE, tThread_entry, ppipe, NULL, NULL, K_PRIO_PREEMPT(0), 0, 0); tpipe_put(ppipe, K_NO_WAIT); k_sem_take(&end_sema, K_FOREVER); k_sem_take(&end_sema, K_FOREVER); tpipe_get(ppipe, K_FOREVER); /* clear the spawned thread avoid side effect */ k_thread_abort(tid); } static void tpipe_put_no_wait(struct k_pipe *ppipe) { size_t to_wt, wt_byte = 0; for (int i = 0; i < PIPE_LEN; i += wt_byte) { /**TESTPOINT: pipe put*/ to_wt = (PIPE_LEN - i) >= BYTES_TO_WRITE ? BYTES_TO_WRITE : (PIPE_LEN - i); zassert_false(k_pipe_put(ppipe, &data[i], to_wt, &wt_byte, 1, K_NO_WAIT), NULL); zassert_true(wt_byte == to_wt || wt_byte == 1, NULL); } } static void thread_handler(void *p1, void *p2, void *p3) { tpipe_put_no_wait((struct k_pipe *)p1); k_sem_give(&end_sema); } static void thread_for_block_put(void *p1, void *p2, void *p3) { tpipe_block_put((struct k_pipe *)p1, (struct k_sem *)p2, K_FOREVER); } /** * @addtogroup kernel_pipe_tests * @{ */ /** * @brief Test pipe data passing between threads * @see k_pipe_init(), k_pipe_put(), #K_PIPE_DEFINE(x) */ void test_pipe_thread2thread(void) { /**TESTPOINT: test k_pipe_init pipe*/ k_pipe_init(&pipe, data, PIPE_LEN); tpipe_thread_thread(&pipe); /**TESTPOINT: test K_PIPE_DEFINE pipe*/ tpipe_thread_thread(&kpipe); } #ifdef CONFIG_USERSPACE /** * @brief Test data passing using pipes between user threads * @see k_pipe_init(), k_pipe_put(), #K_PIPE_DEFINE(x) */ void test_pipe_user_thread2thread(void) { /**TESTPOINT: test k_pipe_init pipe*/ struct k_pipe *p = k_object_alloc(K_OBJ_PIPE); zassert_true(p != NULL, NULL); zassert_false(k_pipe_alloc_init(p, PIPE_LEN), NULL); tpipe_thread_thread(&pipe); /**TESTPOINT: test K_PIPE_DEFINE pipe*/ tpipe_thread_thread(&kpipe); } #endif /** * @brief Test pipe put of blocks * @see k_pipe_block_put() */ void test_pipe_block_put(void) { /**TESTPOINT: test k_pipe_block_put without semaphore*/ k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE, tThread_block_put, &kpipe, NULL, NULL, K_PRIO_PREEMPT(0), 0, 0); k_sleep(10); tpipe_get(&kpipe, K_FOREVER); k_sem_take(&end_sema, K_FOREVER); k_thread_abort(tid); } /** * @brief Test pipe block put with semaphore * @see k_pipe_block_put() */ void test_pipe_block_put_sema(void) { struct k_sem sync_sema; k_sem_init(&sync_sema, 0, 1); /**TESTPOINT: test k_pipe_block_put with semaphore*/ k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE, tThread_block_put, &pipe, &sync_sema, NULL, K_PRIO_PREEMPT(0), 0, 0); k_sleep(10); tpipe_get(&pipe, K_FOREVER); k_sem_take(&end_sema, K_FOREVER); k_thread_abort(tid); } /** * @brief Test pipe get and put * @see k_pipe_put(), k_pipe_get() */ void test_pipe_get_put(void) { /**TESTPOINT: test API sequence: [get, put]*/ k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE, tThread_block_put, &kpipe, NULL, NULL, K_PRIO_PREEMPT(0), 0, 0); /*get will be executed previous to put*/ tpipe_get(&kpipe, K_FOREVER); k_sem_take(&end_sema, K_FOREVER); k_thread_abort(tid); } /** * @brief Test resource pool free * @see k_mem_pool_malloc() */ #ifdef CONFIG_USERSPACE void test_resource_pool_auto_free(void) { /* Pool has 2 blocks, both should succeed if kernel object and pipe * buffer are auto-freed when the allocating threads exit */ zassert_true(k_mem_pool_malloc(&test_pool, 64) != NULL, NULL); zassert_true(k_mem_pool_malloc(&test_pool, 64) != NULL, NULL); } #endif static void tThread_half_pipe_put(void *p1, void *p2, void *p3) { tpipe_put((struct k_pipe *)p1, K_FOREVER); } static void tThread_half_pipe_block_put(void *p1, void *p2, void *p3) { tpipe_block_put((struct k_pipe *)p1, (struct k_sem *)p2, K_FOREVER); } /** * @brief Test get/put with smaller pipe buffer * @see k_pipe_put(), k_pipe_get() */ void test_half_pipe_get_put(void) { /**TESTPOINT: thread-thread data passing via pipe*/ k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE, tThread_half_pipe_put, &khalfpipe, NULL, NULL, K_PRIO_PREEMPT(0), K_INHERIT_PERMS | K_USER, 0); tpipe_get(&khalfpipe, K_FOREVER); /* clear the spawned thread avoid side effect */ k_thread_abort(tid); } /** * @brief Test pipe block put with semaphore and smaller pipe buffer * @see k_pipe_block_put() */ void test_half_pipe_block_put_sema(void) { struct k_sem sync_sema; k_sem_init(&sync_sema, 0, 1); /**TESTPOINT: test k_pipe_block_put with semaphore*/ k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE, tThread_half_pipe_block_put, &khalfpipe, &sync_sema, NULL, K_PRIO_PREEMPT(0), 0, 0); k_sleep(10); tpipe_get(&khalfpipe, K_FOREVER); k_thread_abort(tid); } /** * @brief Test Initialization and buffer allocation of pipe, * with various parameters * @see k_pipe_alloc_init(), k_pipe_cleanup() */ void test_pipe_alloc(void) { int ret; zassert_false(k_pipe_alloc_init(&pipe_test_alloc, PIPE_LEN), NULL); tpipe_kthread_to_kthread(&pipe_test_alloc); k_pipe_cleanup(&pipe_test_alloc); zassert_false(k_pipe_alloc_init(&pipe_test_alloc, 0), NULL); k_pipe_cleanup(&pipe_test_alloc); ret = k_pipe_alloc_init(&pipe_test_alloc, PIPE_LEN * 8); zassert_true(ret == -ENOMEM, "resource pool is smaller then requested buffer"); } /** * @brief Test pending reader in pipe * @see k_pipe_put(), k_pipe_get() */ void test_pipe_reader_wait(void) { /**TESTPOINT: test k_pipe_block_put with semaphore*/ k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE, thread_handler, &kpipe1, NULL, NULL, K_PRIO_PREEMPT(0), 0, 0); tpipe_get(&kpipe1, K_FOREVER); k_sem_take(&end_sema, K_FOREVER); k_thread_abort(tid); } /** * @brief Test pending writer in pipe * @see k_pipe_block_put(), k_pipe_get() */ void test_pipe_block_writer_wait(void) { struct k_sem s_sema; struct k_sem s_sema1; const int main_low_prio = 10; k_sem_init(&s_sema, 0, 1); k_sem_init(&s_sema1, 0, 1); int old_prio = k_thread_priority_get(k_current_get()); k_thread_priority_set(k_current_get(), main_low_prio); /**TESTPOINT: test k_pipe_block_put with semaphore*/ k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE, thread_for_block_put, &kpipe1, &s_sema, NULL, K_PRIO_PREEMPT(main_low_prio - 1), 0, 0); k_tid_t tid1 = k_thread_create(&tdata1, tstack1, STACK_SIZE, thread_for_block_put, &kpipe1, &s_sema1, NULL, K_PRIO_PREEMPT(main_low_prio - 1), 0, 0); tpipe_get(&kpipe1, K_FOREVER); k_thread_priority_set(k_current_get(), old_prio); k_thread_abort(tid); k_thread_abort(tid1); } /** * @} */