The default address for FAULTY_ADDRESS is valid on the qemu_cortex_r5
board, so use a value that is not mapped for that board.
Signed-off-by: Bradley Bolen <bbolen@lexmark.com>
Some arches like x86 need all memory mapped so that they can
fetch information placed arbitrarily by firmware, like ACPI
tables.
Ensure that if this is the case, the kernel won't accidentally
clobber it by thinking the relevant virtual memory is unused.
Otherwise this has no effect on page frame management.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Skip the scenario of accesing a faulty address
in test_string_nlen for Non-Secure Zephyr builds,
because accessing faulty addresses in this case
triggers SecureFault that may hang the system
completely.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
Use the core k_heap API pervasively within our tree instead of the
z_mem_pool wrapper that provided compatibility with the older mempool
implementation.
Almost all of this is straightforward swapping of one alloc/free call
for another. In a few cases where code was holding onto an old-style
"mem_block" a local compatibility struct with a single field has been
swapped in to keep the invasiveness of the changes down.
Note that not all the relevant changes in this patch have in-tree test
coverage, though I validated that it all builds.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
The k_mem_pool allocator is no more, and the z_mem_pool compatibility
API is going away. The internal allocator should be a k_heap always.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Mark all k_mem_pool APIs deprecated for future code. Remaining
internal usage now uses equivalent "z_mem_pool" symbols instead.
Fixes#24358
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Some platforms may have multiple RAM regions which are
dis-continuous in the physical memory map. We really want
these to be in a continuous virtual region, and we need to
stop assuming that there is just one SRAM region that is
identity-mapped.
We no longer use CONFIG_SRAM_BASE_ADDRESS and CONFIG_SRAM_SIZE
as the bounds of kernel RAM, and no longer assume in the core
kernel that these are identity mapped at boot.
Two new Kconfigs, CONFIG_KERNEL_VM_BASE and
CONFIG_KERNEL_RAM_SIZE now indicate the bounds of this region
in virtual memory.
We are currently only memory-mapping physical device driver
MMIO regions so we do not need virtual-to-physical calculations
to re-map RAM yet. When the time comes an architecture interface
will be defined for this.
Platforms which just have one RAM region may continue to
identity-map it.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
em_starterkit_7d is not capable to generate error when access unmapped
address at kernel mode. So toggle off this part of test.
Signed-off-by: Yuguo Zou <yuguo.zou@synopsys.com>
We no longer plan to support a split address space with
the kernel in high memory and per-process address spaces.
Because of this, we can simplify some things. System RAM
is now always identity mapped at boot.
We no longer require any virtual-to-physical translation
for page tables, and can remove the dual-mapping logic
from the page table generation script since we won't need
to transition the instruction point off of physical
addresses.
CONFIG_KERNEL_VM_BASE and CONFIG_KERNEL_VM_LIMIT
have been removed. The kernel's address space always
starts at CONFIG_SRAM_BASE_ADDRESS, of a fixed size
specified by CONFIG_KERNEL_VM_SIZE.
Driver MMIOs and other uses of k_mem_map() are still
virtually mapped, and the later introduction of demand
paging will result in only a subset of system RAM being
a fixed identity mapping instead of all of it.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
1. Doxygen tags updates of the existing tests.
2. Fixed use of API K_MSEC in test_syscall_torture
3. Removed misprints
Signed-off-by: Maksim Masalski <maksim.masalski@intel.com>
Certain types of system call validation may need to be pushed
deeper in the implementation and not performed in the verification
function. If such checks are only pertinent when the caller was
from user mode, we need an API to detect this situation.
This is implemented by having thread->syscall_frame be non-NULL
only while a user system call is in progress. The template for the
system call marshalling functions is changed to clear this value
on exit.
A test is added to prove that this works.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
On nucleo_f429zi and nucleo_f207zg boards,
0xFFFFFFF0 is not a faulty address.
Instead we can use 0x0FFFFFFFF.
Signed-off-by: Alexandre Bourdiol <alexandre.bourdiol@st.com>
Kernel timeouts have always been a 32 bit integer despite the
existence of generation macros, and existing code has been
inconsistent about using them. Upcoming commits are going to make the
timeout arguments opaque, so fix things up to be rigorously correct.
Changes include:
+ Adding a K_TIMEOUT_EQ() macro for code that needs to compare timeout
values for equality (e.g. with K_FOREVER or K_NO_WAIT).
+ Adding a k_msleep() synonym for k_sleep() which can continue to take
integral arguments as k_sleep() moves away to timeout arguments.
+ Pervasively using the K_MSEC(), K_SECONDS(), et. al. macros to
generate timeout arguments.
+ Removing the usage of K_NO_WAIT as the final argument to
K_THREAD_DEFINE(). This is just a count of milliseconds and we need
to use a zero.
This patch include no logic changes and should not affect generated
code at all.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Hammer all CPUs with multiple threads all making system calls
that do memory allocations and buffer validation, in the hopes
that it will help smoke out concurrency issues.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This works around an issue with this emulator's configuration where
there is no memory address that can be poked to generate a fault,
it is simulating memory for the entire address space.
Fixes: #22561
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Promote the private z_arch_* namespace, which specifies
the interface between the core kernel and the
architecture code, to a new top-level namespace named
arch_*.
This allows our documentation generation to create
online documentation for this set of interfaces,
and this set of interfaces is worth treating in a
more formal way anyway.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
System call arguments, at the arch layer, are single words. So
passing wider values requires splitting them into two registers at
call time. This gets even more complicated for values (e.g
k_timeout_t) that may have different sizes depending on configuration.
This patch adds a feature to gen_syscalls.py to detect functions with
wide arguments and automatically generates code to split/unsplit them.
Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't
work with functions like this, because for N arguments (our current
maximum N is 10) there are 2^N possible configurations of argument
widths. So this generates the complete functions for each handler and
wrapper, effectively doing in python what was originally done in the
preprocessor.
Another complexity is that traditional the z_hdlr_*() function for a
system call has taken the raw list of word arguments, which does not
work when some of those arguments must be 64 bit types. So instead of
using a single Z_SYSCALL_HANDLER macro, this splits the job of
z_hdlr_*() into two steps: An automatically-generated unmarshalling
function, z_mrsh_*(), which then calls a user-supplied verification
function z_vrfy_*(). The verification function is typesafe, and is a
simple C function with exactly the same argument and return signature
as the syscall impl function. It is also not responsible for
validating the pointers to the extra parameter array or a wide return
value, that code gets automatically generated.
This commit includes new vrfy/msrh handling for all syscalls invoked
during CI runs. Future commits will port the less testable code.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Update reserved function names starting with one underscore, replacing
them as follows:
'_k_' with 'z_'
'_K_' with 'Z_'
'_handler_' with 'z_handl_'
'_Cstart' with 'z_cstart'
'_Swap' with 'z_swap'
This renaming is done on both global and those static function names
in kernel/include and include/. Other static function names in kernel/
are renamed by removing the leading underscore. Other function names
not starting with any prefix listed above are renamed starting with
a 'z_' or 'Z_' prefix.
Function names starting with two or three leading underscores are not
automatcally renamed since these names will collide with the variants
with two or three leading underscores.
Various generator scripts have also been updated as well as perf,
linker and usb files. These are
drivers/serial/uart_handlers.c
include/linker/kobject-text.ld
kernel/include/syscall_handler.h
scripts/gen_kobject_list.py
scripts/gen_syscall_header.py
Signed-off-by: Patrik Flykt <patrik.flykt@intel.com>
This was never a long-term solution, more of a gross hack
to get test cases working until we could figure out a good
end-to-end solution for memory domains that generated
appropriate linker sections. Now that we have this with
the app shared memory feature, and have converted all tests
to remove it, delete this feature.
To date all userspace APIs have been tagged as 'experimental'
which sidesteps deprecation policies.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
CONFIG_APPLICATION_MEMORY was a stopgap feature that is
being removed from the kernel. Convert tests and samples
to use the application shared memory feature instead,
in most cases using the domain set up by ztest.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Test that we can define our own system calls in application code
and that fault handling works properly.
Additional tests for base system call infrastructure, outside of
specific system calls, go here.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>