eedb/share/include/range/v3/algorithm/heap_algorithm.hpp
Wieczorek Bartosz f4ef592706 add ranges lib
2017-03-18 08:15:40 +01:00

381 lines
15 KiB
C++

/// \file
// Range v3 library
//
// Copyright Eric Niebler 2014
//
// Use, modification and distribution is subject to the
// Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// Project home: https://github.com/ericniebler/range-v3
//
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef RANGES_V3_ALGORITHM_HEAP_ALGORITHM_HPP
#define RANGES_V3_ALGORITHM_HEAP_ALGORITHM_HPP
#include <functional>
#include <meta/meta.hpp>
#include <range/v3/range_fwd.hpp>
#include <range/v3/distance.hpp>
#include <range/v3/begin_end.hpp>
#include <range/v3/range_concepts.hpp>
#include <range/v3/range_traits.hpp>
#include <range/v3/utility/iterator.hpp>
#include <range/v3/utility/iterator_concepts.hpp>
#include <range/v3/utility/iterator_traits.hpp>
#include <range/v3/utility/functional.hpp>
#include <range/v3/utility/static_const.hpp>
namespace ranges
{
inline namespace v3
{
/// \ingroup group-concepts
template<typename I, typename C = ordered_less, typename P = ident>
using IsHeapable = meta::strict_and<
RandomAccessIterator<I>,
IndirectRelation<C, projected<I, P>>>;
/// \cond
namespace detail
{
struct is_heap_until_n_fn
{
template<typename I, typename C = ordered_less, typename P = ident,
CONCEPT_REQUIRES_(IsHeapable<I, C, P>())>
I operator()(I const begin_, difference_type_t<I> const n_, C pred = C{}, P proj = P{}) const
{
RANGES_EXPECT(0 <= n_);
difference_type_t<I> p = 0, c = 1;
I pp = begin_;
while(c < n_)
{
I cp = begin_ + c;
if(invoke(pred, invoke(proj, *pp), invoke(proj, *cp)))
return cp;
++c;
++cp;
if(c == n_ || invoke(pred, invoke(proj, *pp), invoke(proj, *cp)))
return cp;
++p;
++pp;
c = 2 * p + 1;
}
return begin_ + n_;
}
};
RANGES_INLINE_VARIABLE(is_heap_until_n_fn, is_heap_until_n)
struct is_heap_n_fn
{
template<typename I, typename C = ordered_less, typename P = ident,
CONCEPT_REQUIRES_(IsHeapable<I, C, P>())>
bool operator()(I begin, difference_type_t<I> n, C pred = C{}, P proj = P{}) const
{
return is_heap_until_n(begin, n, std::move(pred), std::move(proj)) == begin + n;
}
};
RANGES_INLINE_VARIABLE(is_heap_n_fn, is_heap_n)
}
/// \endcond
/// \addtogroup group-algorithms
/// @{
struct is_heap_until_fn
{
template<typename I, typename S, typename C = ordered_less, typename P = ident,
CONCEPT_REQUIRES_(IsHeapable<I, C, P>() && Sentinel<S, I>())>
I operator()(I begin, S end, C pred = C{}, P proj = P{}) const
{
return detail::is_heap_until_n(std::move(begin), distance(begin, end), std::move(pred),
std::move(proj));
}
template<typename Rng, typename C = ordered_less, typename P = ident,
typename I = iterator_t<Rng>,
CONCEPT_REQUIRES_(IsHeapable<I, C, P>() && Range<Rng>())>
safe_iterator_t<Rng> operator()(Rng &&rng, C pred = C{}, P proj = P{}) const
{
return detail::is_heap_until_n(begin(rng), distance(rng), std::move(pred),
std::move(proj));
}
};
/// \sa `is_heap_until_fn`
/// \ingroup group-algorithms
RANGES_INLINE_VARIABLE(with_braced_init_args<is_heap_until_fn>,
is_heap_until)
struct is_heap_fn
{
template<typename I, typename S, typename C = ordered_less, typename P = ident,
CONCEPT_REQUIRES_(IsHeapable<I, C, P>() && Sentinel<S, I>())>
bool operator()(I begin, S end, C pred = C{}, P proj = P{}) const
{
return detail::is_heap_n(std::move(begin), distance(begin, end), std::move(pred),
std::move(proj));
}
template<typename Rng, typename C = ordered_less, typename P = ident,
typename I = iterator_t<Rng>,
CONCEPT_REQUIRES_(IsHeapable<I, C, P>() && Range<Rng>())>
bool operator()(Rng &&rng, C pred = C{}, P proj = P{}) const
{
return detail::is_heap_n(begin(rng), distance(rng), std::move(pred), std::move(proj));
}
};
/// \sa `is_heap_fn`
/// \ingroup group-algorithms
RANGES_INLINE_VARIABLE(with_braced_init_args<is_heap_fn>, is_heap)
/// @}
/// \cond
namespace detail
{
struct sift_up_n_fn
{
template<typename I, typename C = ordered_less, typename P = ident>
void operator()(I begin, difference_type_t<I> len, C pred = C{}, P proj = P{}) const
{
if(len > 1)
{
I end = begin + len;
len = (len - 2) / 2;
I i = begin + len;
if(invoke(pred, invoke(proj, *i), invoke(proj, *--end)))
{
value_type_t<I> v = iter_move(end);
do
{
*end = iter_move(i);
end = i;
if(len == 0)
break;
len = (len - 1) / 2;
i = begin + len;
} while(invoke(pred, invoke(proj, *i), invoke(proj, v)));
*end = std::move(v);
}
}
}
};
RANGES_INLINE_VARIABLE(sift_up_n_fn, sift_up_n)
struct sift_down_n_fn
{
template<typename I, typename C = ordered_less, typename P = ident>
void operator()(I begin, difference_type_t<I> len, I start, C pred = C {}, P proj = P{}) const
{
// left-child of start is at 2 * start + 1
// right-child of start is at 2 * start + 2
auto child = start - begin;
if(len < 2 || (len - 2) / 2 < child)
return;
child = 2 * child + 1;
I child_i = begin + child;
if((child + 1) < len && invoke(pred, invoke(proj, *child_i), invoke(proj, *(child_i + 1))))
{
// right-child exists and is greater than left-child
++child_i;
++child;
}
// check if we are in heap-order
if(invoke(pred, invoke(proj, *child_i), invoke(proj, *start)))
// we are, start is larger than it's largest child
return;
value_type_t<I> top = iter_move(start);
do
{
// we are not in heap-order, swap the parent with it's largest child
*start = iter_move(child_i);
start = child_i;
if((len - 2) / 2 < child)
break;
// recompute the child based off of the updated parent
child = 2 * child + 1;
child_i = begin + child;
if((child + 1) < len && invoke(pred, invoke(proj, *child_i), invoke(proj, *(child_i + 1))))
{
// right-child exists and is greater than left-child
++child_i;
++child;
}
// check if we are in heap-order
} while (!invoke(pred, invoke(proj, *child_i), invoke(proj, top)));
*start = std::move(top);
}
};
RANGES_INLINE_VARIABLE(sift_down_n_fn, sift_down_n)
}
/// \endcond
/// \addtogroup group-algorithms
/// @{
struct push_heap_fn
{
template<typename I, typename S, typename C = ordered_less, typename P = ident,
CONCEPT_REQUIRES_(RandomAccessIterator<I>() && Sentinel<S, I>() && Sortable<I, C, P>())>
I operator()(I begin, S end, C pred = C{}, P proj = P{}) const
{
auto n = distance(begin, end);
detail::sift_up_n(begin, n, std::move(pred), std::move(proj));
return begin + n;
}
template<typename Rng, typename C = ordered_less, typename P = ident,
typename I = iterator_t<Rng>,
CONCEPT_REQUIRES_(RandomAccessRange<Rng>() && Sortable<I, C, P>())>
safe_iterator_t<Rng> operator()(Rng &&rng, C pred = C{}, P proj = P{}) const
{
I begin = ranges::begin(rng);
auto n = distance(rng);
detail::sift_up_n(begin, n, std::move(pred), std::move(proj));
return begin + n;
}
};
/// \sa `push_heap_fn`
/// \ingroup group-algorithms
RANGES_INLINE_VARIABLE(with_braced_init_args<push_heap_fn>, push_heap)
/// @}
/// \cond
namespace detail
{
struct pop_heap_n_fn
{
template<typename I, typename C = ordered_less, typename P = ident,
CONCEPT_REQUIRES_(RandomAccessIterator<I>() && Sortable<I, C, P>())>
void operator()(I begin, difference_type_t<I> len, C pred = C{},
P proj = P{}) const
{
if(len > 1)
{
ranges::iter_swap(begin, begin + (len-1));
detail::sift_down_n(begin, len-1, begin, std::move(pred), std::move(proj));
}
}
};
RANGES_INLINE_VARIABLE(pop_heap_n_fn, pop_heap_n)
}
/// \endcond
/// \addtogroup group-algorithms
/// @{
struct pop_heap_fn
{
template<typename I, typename S, typename C = ordered_less, typename P = ident,
CONCEPT_REQUIRES_(RandomAccessIterator<I>() && Sentinel<S, I>() && Sortable<I, C, P>())>
I operator()(I begin, S end, C pred = C{}, P proj = P{}) const
{
auto n = distance(begin, end);
detail::pop_heap_n(begin, n, std::move(pred), std::move(proj));
return begin + n;
}
template<typename Rng, typename C = ordered_less, typename P = ident,
typename I = iterator_t<Rng>,
CONCEPT_REQUIRES_(RandomAccessRange<Rng>() && Sortable<I, C, P>())>
safe_iterator_t<Rng> operator()(Rng &&rng, C pred = C{}, P proj = P{}) const
{
I begin = ranges::begin(rng);
auto n = distance(rng);
detail::pop_heap_n(begin, n, std::move(pred), std::move(proj));
return begin + n;
}
};
/// \sa `pop_heap_fn`
/// \ingroup group-algorithms
RANGES_INLINE_VARIABLE(with_braced_init_args<pop_heap_fn>, pop_heap)
struct make_heap_fn
{
template<typename I, typename S, typename C = ordered_less, typename P = ident,
CONCEPT_REQUIRES_(RandomAccessIterator<I>() && Sentinel<S, I>() && Sortable<I, C, P>())>
I operator()(I begin, S end, C pred = C{}, P proj = P{}) const
{
difference_type_t<I> const n = distance(begin, end);
if(n > 1)
// start from the first parent, there is no need to consider children
for(auto start = (n - 2) / 2; start >= 0; --start)
detail::sift_down_n(begin, n, begin + start, std::ref(pred), std::ref(proj));
return begin + n;
}
template<typename Rng, typename C = ordered_less, typename P = ident,
typename I = iterator_t<Rng>,
CONCEPT_REQUIRES_(RandomAccessRange<Rng>() && Sortable<I, C, P>())>
safe_iterator_t<Rng> operator()(Rng &&rng, C pred = C{}, P proj = P{}) const
{
I begin = ranges::begin(rng);
difference_type_t<I> const n = distance(rng);
if(n > 1)
// start from the first parent, there is no need to consider children
for(auto start = (n - 2) / 2; start >= 0; --start)
detail::sift_down_n(begin, n, begin + start, std::ref(pred), std::ref(proj));
return begin + n;
}
};
/// \sa `make_heap_fn`
/// \ingroup group-algorithms
RANGES_INLINE_VARIABLE(with_braced_init_args<make_heap_fn>, make_heap)
struct sort_heap_fn
{
template<typename I, typename S, typename C = ordered_less, typename P = ident,
CONCEPT_REQUIRES_(RandomAccessIterator<I>() && Sentinel<S, I>() && Sortable<I, C, P>())>
I operator()(I begin, S end, C pred = C{}, P proj = P{}) const
{
difference_type_t<I> const n = distance(begin, end);
for(auto i = n; i > 1; --i)
detail::pop_heap_n(begin, i, std::ref(pred), std::ref(proj));
return begin + n;
}
template<typename Rng, typename C = ordered_less, typename P = ident,
typename I = iterator_t<Rng>,
CONCEPT_REQUIRES_(RandomAccessRange<Rng &>() && Sortable<I, C, P>())>
safe_iterator_t<Rng> operator()(Rng &&rng, C pred = C{}, P proj = P{}) const
{
I begin = ranges::begin(rng);
difference_type_t<I> const n = distance(rng);
for(auto i = n; i > 1; --i)
detail::pop_heap_n(begin, i, std::ref(pred), std::ref(proj));
return begin + n;
}
};
/// \sa `sort_heap_fn`
/// \ingroup group-algorithms
RANGES_INLINE_VARIABLE(with_braced_init_args<sort_heap_fn>, sort_heap)
/// @}
} // namespace v3
} // namespace ranges
#endif // include guard